The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example

被引:2
作者
Morlighem, Camille [1 ,2 ]
Chaiban, Celia [1 ,2 ]
Georganos, Stefanos [3 ,4 ]
Brousse, Oscar [5 ,6 ]
Van de Walle, Jonas [5 ]
van Lipzig, Nicole P. M. [5 ]
Wolff, Eleonore [4 ]
Dujardin, Sebastien [1 ,2 ]
Linard, Catherine [1 ,2 ,7 ]
机构
[1] Univ Namur, Dept Geog, B-5000 Namur, Belgium
[2] Univ Namur, ILEE, B-5000 Namur, Belgium
[3] KTH Royal Inst Technol, Div Geoinformat, S-10044 Stockholm, Sweden
[4] Univ Libre Bruxelles, Dept Geosci Environm & Soc, B-1050 Brussels, Belgium
[5] Katholieke Univ Leuven, Dept Earth & Environm Sci, B-3001 Leuven, Belgium
[6] UCL, Inst Environm Design & Engn, London WC1H 0NN, England
[7] Univ Namur, NARILIS, B-5000 Namur, Belgium
基金
英国惠康基金;
关键词
vector-borne diseases; malaria; African cities; random forest; multi-satellite; LOCAL CLIMATE ZONES; SUB-SAHARAN AFRICA; HEALTH SURVEYS; IMPACT;
D O I
10.3390/rs14215381
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing has been used for decades to produce vector-borne disease risk maps aiming at better targeting control interventions. However, the coarse and climatic-driven nature of these maps largely hampered their use in the fight against malaria in highly heterogeneous African cities. Remote sensing now offers a large panel of data with the potential to greatly improve and refine malaria risk maps at the intra-urban scale. This research aims at testing the ability of different geospatial datasets exclusively derived from satellite sensors to predict malaria risk in two sub-Saharan African cities: Kampala (Uganda) and Dar es Salaam (Tanzania). Using random forest models, we predicted intra-urban malaria risk based on environmental and socioeconomic predictors using climatic, land cover and land use variables among others. The combination of these factors derived from different remote sensors showed the highest predictive power, particularly models including climatic, land cover and land use predictors. However, the predictive power remained quite low, which is suspected to be due to urban malaria complexity and malaria data limitations. While huge improvements have been made over the last decades in terms of remote sensing data acquisition and processing, the quantity and quality of epidemiological data are not yet sufficient to take full advantage of these improvements.
引用
收藏
页数:13
相关论文
共 54 条
  • [1] Bischl B, 2016, J MACH LEARN RES, V17
  • [2] Risk Factors for Infectious Diseases in Urban Environments of Sub-Saharan Africa: A Systematic Review and Critical Appraisal of Evidence
    Boyce, Matthew R.
    Katz, Rebecca
    Standley, Claire J.
    [J]. TROPICAL MEDICINE AND INFECTIOUS DISEASE, 2019, 4 (04)
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] Can we use local climate zones for predicting malaria prevalence across sub-Saharan African cities?
    Brousse, O.
    Georganos, S.
    Demuzere, M.
    Dujardin, S.
    Lennert, M.
    Linard, C.
    Snow, R. W.
    Thiery, W.
    van Lipzig, N. P. M.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (12)
  • [5] The local climate impact of an African city during clear-sky conditions-Implications of the recent urbanization in Kampala (Uganda)
    Brousse, Oscar
    Wouters, Hendrik
    Demuzere, Matthias
    Thiery, Wim
    Van de Walle, Jonas
    van Lipzig, Nicole P. M.
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (10) : 4586 - 4608
  • [6] Using Local Climate Zones in Sub-Saharan Africa to tackle urban health issues
    Brousse, Oscar
    Georganos, Stefanos
    Demuzere, Matthias
    Vanhuysse, Sabine
    Wouters, Hendrik
    Wolff, Eleonore
    Linard, Catherine
    van Lipzig, Nicole P-M
    Dujardin, Sebastien
    [J]. URBAN CLIMATE, 2019, 27 : 227 - 242
  • [7] Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa
    Brown, Biobele J.
    Manescu, Petru
    Przybylski, Alexander A.
    Caccioli, Fabio
    Oyinloye, Gbeminiyi
    Elmi, Muna
    Shaw, Michael J.
    Pawar, Vijay
    Claveau, Remy
    Shawe-Taylor, John
    Srinivasan, Mandayam A.
    Afolabi, Nathaniel K.
    Rees, Geraint
    Orimadegun, Adebola E.
    Ajetunmobi, Wasiu A.
    Akinkunmi, Francis
    Kowobari, Olayinka
    Osinusi, Kikelomo
    Akinbami, Felix O.
    Omokhodion, Samuel
    Shokunbi, Wuraola A.
    Lagunju, Ikeoluwa
    Sodeinde, Olugbemiro
    Fernandez-Reyes, Delmiro
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Buchhorn M, 2020, COPERNICUS GLOBAL LA
  • [9] Mobile phones and malaria: Modeling human and parasite travel
    Buckee, Caroline O.
    Wesolowski, Amy
    Eagle, Nathan N.
    Hansen, Elsa
    Snow, Robert W.
    [J]. TRAVEL MEDICINE AND INFECTIOUS DISEASE, 2013, 11 (01) : 15 - 22
  • [10] Burgert C.R., 2013, DHS SPATIAL ANAL REP