An entropy formula relating Hamilton's surface entropy and Perelman's W entropy

被引:6
作者
Guo, Hongxin [1 ]
机构
[1] Wenzhou Univ, Sch Math & Informat Sci, Wenzhou 325035, Zhejiang, Peoples R China
关键词
D O I
10.1016/j.crma.2013.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, based on Hamilton's surface entropy formula, we construct an entropy formula of Perelman's type for the Ricci flow on a closed surface with positive curvature. Similar to Perelman's W entropy, the critical point of our entropy is the gradient shrinking soliton; however, there is no conjugate heat equation involved. This shows a close relation between Hamilton's entropy and Perelman's W entropy on closed surfaces. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:115 / 118
页数:4
相关论文
共 7 条
  • [1] CHOW B, 1991, J DIFFER GEOM, V33, P597
  • [2] Chow B., 2006, GRAD STUD MATH, V77
  • [3] Chow Bennett, 2004, Math. Surveys Monogr, V110, pxii+325
  • [4] Guo H., PACIFIC J M IN PRESS
  • [5] Hamilton R.S., 1988, MATH GEN RELATIVITY, V71, P237
  • [6] The entropy formula for linear heat equation (vol 14, pg 87, 2004)
    Ni, L
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (02) : 369 - 374
  • [7] Perelman G., ARXIVMATH0211159V1