Interaction of anoxygenic phototrophic bacteria Rhodopseudomonas sp with kaolinite

被引:10
|
作者
Kompantseva, E. I. [1 ]
Naimark, E. B. [2 ]
Boeva, N. M. [3 ]
Zhukhlistov, A. P. [3 ]
Novikov, V. M. [3 ]
Nikitina, N. S. [4 ]
机构
[1] Russian Acad Sci, Winogradsky Inst Microbiol, Moscow 117312, Russia
[2] Russian Acad Sci, Inst Paleontol, Moscow 117997, Russia
[3] Russian Acad Sci, Borisyak Inst Geol Ore Deposits Petrog Mineral &, Moscow 109017, Russia
[4] Russian Acad Agr Sci, Dokuchaev Soil Inst, Moscow 109017, Russia
基金
俄罗斯基础研究基金会;
关键词
kaolinite; anoxygenic phototrophic bacteria; anaerobic conditions; exchange cations; differential thermal analysis; electron diffraction analysis; bioleaching; gibbsite; MINERALS; RHODOVULUM;
D O I
10.1134/S0026261713030077
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The interaction between freshwater nonsulfur purple bacteria Rhodopseudomonas sp. UZ-25p (Uzon caldera, Kamchatka, Russia) and two kaolinite samples (Zhuravlinyi Log, Chelyabinsk oblast) was investigated. Alterations in the chemical composition of the minerals and solutions, the parameters of bacterial growth, and crystal morphology and mineralogy of the kaolinite samples indicated the interactions between all components of the system (minerals, water, growth medium, and bacteria). Bacteria removed some elements from the medium, used them for growth, and promoted their transition into the mineral exchange pool. In the presence of bacteria, kaolinite cation exchange capacity increased and saturation of kaolinites with bases occured. Partial biodegradation of kaolinites, accompanied by ordering of the crystalline structure of their lamellar phase, was the main factor responsible for the increase in cation exchange capacity. For the first time anoxygenic phototrophic bacteria were found to degrade kaolinite with formation of gibbsite. The theoretical and applied significance of the experimental results is discussed.
引用
收藏
页码:316 / 326
页数:11
相关论文
共 50 条
  • [1] Interaction of anoxygenic phototrophic bacteria Rhodopseudomonas sp. with kaolinite
    E. I. Kompantseva
    E. B. Naimark
    N. M. Boeva
    A. P. Zhukhlistov
    V. M. Novikov
    N. S. Nikitina
    Microbiology, 2013, 82 : 316 - 326
  • [2] Aerobic anoxygenic phototrophic bacteria
    Yurkov, VV
    Beatty, JT
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (03) : 695 - +
  • [3] Biotechnology of Anoxygenic Phototrophic Bacteria
    Frigaard, Niels-Ulrik
    ANAEROBES IN BIOTECHNOLOGY, 2016, 156 : 139 - 154
  • [4] Interaction of metals and protons with anoxygenic phototrophic bacteria Rhodobacter blasticus
    Pokrovsky, Oleg S.
    Martinez, Raul E.
    Kompantseva, Elena I.
    Shirokova, Liudmila S.
    CHEMICAL GEOLOGY, 2013, 335 : 75 - 86
  • [5] Anoxygenic phototrophic bacteria of waste waters
    Munjam, S
    Vasavi, D
    Girisham, S
    Reddy, SM
    PERSPECTIVES IN BIOTECHNOLOGY, 2001, : 163 - 170
  • [6] Production of amylases (α and β) by anoxygenic phototrophic bacteria
    Munjam, Srinivas
    Vasavi, D.
    Girisham, S.
    Reddy, S.M.
    Journal of Food Science and Technology, 2003, 40 (05) : 505 - 508
  • [7] Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria
    R. N. Ivanovsky
    O. I. Keppen
    N. V. Lebedeva
    D. S. Gruzdev
    Microbiology, 2020, 89 : 266 - 272
  • [8] Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria
    Ivanovsky, R. N.
    Keppen, I
    Lebedeva, N., V
    Gruzdev, D. S.
    MICROBIOLOGY, 2020, 89 (03) : 266 - 272
  • [9] Production of amylases (α and β) by anoxygenic phototrophic bacteria
    Munjam, S
    Vasavi, D
    Girisham, S
    Reddy, SM
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2003, 40 (05): : 505 - 508
  • [10] FERROUS IRON OXIDATION BY ANOXYGENIC PHOTOTROPHIC BACTERIA
    WIDDEL, F
    SCHNELL, S
    HEISING, S
    EHRENREICH, A
    ASSMUS, B
    SCHINK, B
    NATURE, 1993, 362 (6423) : 834 - 836