Logarithmic norms for matrix pencils

被引:42
作者
Higueras, I [1 ]
García-Celayeta, B [1 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Spain
关键词
matrix pencil; logarithmic norm; Lyapunov stability; differential algebraic system;
D O I
10.1137/S0895479897325955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the usual concepts of least upper bound norm and logarithmic norm of a matrix to matrix pencils. Properties of these seminorms and logarithmic norms are derived. This logarithmic norm can be used to study the growth of the solutions of linear variable coefficient differential algebraic systems.
引用
收藏
页码:646 / 666
页数:21
相关论文
共 16 条
  • [1] PROJECTED IMPLICIT RUNGE-KUTTA METHODS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS
    ASCHER, UM
    PETZOLD, LR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 1097 - 1120
  • [2] Brenan K. E., 1989, NUMERICAL SOLUTION I
  • [3] Campbell S.L., 1991, Generalized Inverses of Linear Transformations
  • [4] DEKKER K, 1984, STABILITY RUNGEKUTTA
  • [5] MEASURE OF A MATRIX AS A TOOL TO ANALYZE COMPUTER ALGORITHMS FOR CIRCUIT ANALYSIS
    DESOER, CA
    HANEDA, H
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (05): : 480 - &
  • [6] Gantmacher F.R., 1989, THEORY MATRICES, VII
  • [7] Griepentrog E., 1986, TEUBNER TEXTE MATH, V88
  • [8] Hairer E., 1991, SOLVING ORDINARY DIF
  • [9] On asymptotics in case of linear index-2 differential-algebraic equations
    Hanke, M
    Macana, EI
    Marz, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (04) : 1326 - 1346
  • [10] HANKE M, 1995, OB OCT