Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations

被引:202
作者
Esirkepov, T [1 ]
Yamagiwa, M [1 ]
Tajima, T [1 ]
机构
[1] JAEA, Kansai Photon Sci Inst, Kyoto 6190215, Japan
关键词
D O I
10.1103/PhysRevLett.96.105001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ion acceleration driven by a laser pulse at intensity I=10(20)-10(22) W/cm(2)x(mu m/lambda)(2) from a double layer target is investigated with multiparametric particle-in-cell simulations. For targets with a wide range of thickness l and density n(e), at a given intensity, the highest ion energy gain occurs at certain electron areal density of the target sigma=n(e)l, which is proportional to the square root of intensity. In the case of thin targets and optimal laser pulse duration, the ion maximum energy scales as the square root of the laser pulse power. When the radiation pressure of the laser field becomes dominant, the ion maximum energy becomes proportional to the laser pulse energy.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma [J].
Dieckmann, ME ;
Rowlands, G ;
Eliasson, B ;
Shukla, PK .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A12)
[32]   Target normal sheath acceleration and laser wakefield acceleration particle-in-cell simulations performance on CPU & GPU architectures for high-power laser systems [J].
Tazes, I ;
Ong, J. F. ;
Tesileanu, O. ;
Tanaka, K. A. ;
Papadogiannis, N. A. ;
Tatarakis, M. ;
Dimitriou, V .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (09)
[33]   Two-dimensional relativistic particle-in-cell code for simulation of laser-driven ion acceleration in various acceleration schemes [J].
Jablonski, Slawomir .
PHYSICA SCRIPTA, 2014, T161
[34]   COLLECTIVE ION-ACCELERATION BY A REFLEXING ELECTRON-BEAM - MODEL AND SCALING [J].
MAKO, F ;
TAJIMA, T .
PHYSICS OF FLUIDS, 1984, 27 (07) :1815-1820
[35]   Particle-in-cell simulations of heat flux driven ion acoustic instability [J].
Detering, F ;
Rozmus, W ;
Brantov, A ;
Bychenkov, VY ;
Capjack, CE ;
Sydora, R .
PHYSICS OF PLASMAS, 2005, 12 (01) :1-12
[36]   Magnetotail dipolarization front and associated ion reflection: Particle-in-cell simulations [J].
Wu, P. ;
Shay, M. A. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[37]   Kinetic Alfven Turbulence: Electron and Ion Heating by Particle-in-cell Simulations [J].
Hughes, R. Scott ;
Gary, S. Peter ;
Wang, Joseph ;
Parashar, Tulasi N. .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 847 (02)
[38]   Particle-in-cell simulations of ion dynamics in a pinched-beam diode [J].
Foster, J. C. ;
McClory, J. W. ;
Swanekamp, S. B. ;
Hinshelwood, D. D. ;
Richardson, A. S. ;
Adamson, P. E. ;
Schumer, J. W. ;
James, R. W. ;
Ottinger, P. F. ;
Mosher, D. .
PHYSICS OF PLASMAS, 2022, 29 (05)
[39]   Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry [J].
Yu, Peicheng ;
Xu, Xinlu ;
Davidson, Asher ;
Tableman, Adam ;
Dalichaouch, Thamine ;
Li, Fei ;
Meyers, Michael D. ;
An, Weiming ;
Tsung, Frank S. ;
Decyk, Viktor K. ;
Fiuza, Frederico ;
Vieira, Jorge ;
Fonseca, Ricardo A. ;
Lu, Wei ;
Silva, Luis O. ;
Mori, Warren B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 :747-759
[40]   Modeling single-frequency laser-plasma acceleration using particle-in-cell simulations: The physics of beam breakup [J].
Decker, CD ;
Mori, WB ;
Tzeng, KC ;
Katsouleas, TC .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (02) :379-392