Bi-skew braces and regular subgroups of the holomorph

被引:19
作者
Caranti, A. [1 ,2 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommarive 14, I-38123 Trento, Italy
[2] INdAM GNSAGA, Trento, Italy
关键词
Holomorph; Multiple holomorph; Skew braces; Bi-skew braces; Regular subgroups; Automorphisms; HOPF-GALOIS STRUCTURES; MULTIPLE HOLOMORPHS;
D O I
10.1016/j.jalgebra.2020.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
L. Childs has defined a skew brace (G, ., o) to be a biskew brace if (G, o, .) is also a skew brace, and has given applications of this concept to the equivalent theory of Hopf-Galois structures. The goal of this paper is to deal with bi-skew braces (G, ., o) from the yet equivalent point of view of regular subgroups of the holomorph of (G, .). In particular, we find that certain groups studied by T. Kohl, F. Dalla Volta and the author, and C. Tsang all yield examples of bi-skew braces. Building on a construction of Childs, we also give various methods for exhibiting further examples of bi-skew braces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:647 / 665
页数:19
相关论文
共 19 条
[1]  
[Anonymous], 2015, ALGEBRA, DOI DOI 10.1080/00927872.2014.943842
[2]   CIRCLE GROUPS OF NILPOTENT RINGS [J].
AULT, JC ;
WATTERS, JF .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (01) :48-52
[3]   Groups with abelian central quotient group [J].
Baer, Reinhold .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 44 (1-3) :357-386
[4]   Hopf-Galois structures on extensions of degree p2q and skew braces of order p2q: The cyclic Sylow p-subgroup case [J].
Campedel, E. ;
Caranti, A. ;
Del Corso, I .
JOURNAL OF ALGEBRA, 2020, 556 :1165-1210
[5]   Multiple holomorphs of finite p-groups of class two [J].
Caranti, A. .
JOURNAL OF ALGEBRA, 2018, 516 :352-372
[6]   Groups that have the same holomorph as a finite perfect group [J].
Caranti, A. ;
Dalla Volta, F. .
JOURNAL OF ALGEBRA, 2018, 507 :81-102
[7]  
Caranti A, 2006, PUBL MATH-DEBRECEN, V69, P297
[8]   The multiple holomorph of a finitely generated abelian group [J].
Caranti, A. ;
Dalla Volta, F. .
JOURNAL OF ALGEBRA, 2017, 481 :327-347
[9]   Left Braces: Solutions of the Yang-Baxter Equation [J].
Cedo, Ferran .
ADVANCES IN GROUP THEORY AND APPLICATIONS, 2018, 5 :33-90
[10]  
Childs LN, 2019, NEW YORK J MATH, V25, P574