ON LACUNARY RECURRENCES WITH GAPS OF LENGTH FOUR AND EIGHT FOR THE BERNOULLI NUMBERS

被引:5
作者
Merca, Mircea [1 ]
机构
[1] Acad Romanian Scientists, Splaiul Independentei 54, Bucharest 050094, Romania
关键词
Bernoulli numbers; recurrences;
D O I
10.4134/BKMS.b180347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of finding fast computing methods for Bernoulli numbers has a long and interesting history. In this paper, the author provides new proofs for two lacunary recurrence relations with gaps of length four and eight for the Bernoulli numbers. These proofs invoked the fact that the nth powers of pi(2), pi(4) and pi(8)( )can be expressed in terms of the nth elementary symmetric functions.
引用
收藏
页码:491 / 499
页数:9
相关论文
共 18 条
[1]  
Belinfante J.G. H., 1989, Amer. Math. Monthly, V96, P364
[2]  
Berndt B. C., 1994, RAMANUJANS NOTEBOOKS
[3]   ACCELERATION OF BERNOULLI-NUMBER CALCULATIONS [J].
CHELLALI, M .
JOURNAL OF NUMBER THEORY, 1988, 28 (03) :347-362
[4]  
Honsberger R., 1985, DOLCIANI MATHEMATICA, V9
[5]  
Honsberger R., 1994, APPL FIBONACCI NUMBE, V6, P257
[6]  
Howard FT, 2004, APPLICATIONS OF FIBONACCI NUMBERS, VOL 9, P121
[7]   APPLICATIONS OF A RECURRENCE FOR THE BERNOULLI NUMBERS [J].
HOWARD, FT .
JOURNAL OF NUMBER THEORY, 1995, 52 (01) :157-172
[8]  
Ireland K. F., 2 ALGORITHMS C UNPUB
[9]   Lacunary recurrence formulas for the numbers of Bernoulli and Euler [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1935, 36 :637-649
[10]   On families of linear recurrence relations for the special values of the Riemann zeta function [J].
Merca, Mircea .
JOURNAL OF NUMBER THEORY, 2017, 170 :55-65