Performance Comparison Between p-i-n Tunneling Transistors and Conventional MOSFETs

被引:355
作者
Koswatta, Siyuranga O. [1 ]
Lundstrom, Mark S. [1 ]
Nikonov, Dmitri E. [2 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
基金
美国国家科学基金会;
关键词
Band-to-band tunneling (BTBT); carbon nanotube (CNT); MOSFET; phonon scattering; subthreshold swing; tunneling field-effect transistor (TFET); CARBON NANOTUBE FETS; FIELD-EFFECT TRANSISTORS; QUANTUM CAPACITANCE; PHONON; BENCHMARKING; LIMITS;
D O I
10.1109/TED.2008.2011934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a detailed performance comparison between conventional n-i-n MOSFET transistors and tunneling field-effect transistors (TFETs) based on the p-i-n geometry, using semiconducting carbon nanotubes as the model channel material. Quantum-transport simulations are performed using the nonequilibrium Green's function formalism considering realistic phonon-scattering and band-to-band tunneling mechanisms. Simulations show that TFETs have a smaller quantum capacitance at most gate biases. Despite lower on-current, they can switch faster in a range of on/off-current ratios. Switching energy for TFETs is observed to be fundamentally smaller than that for MOSFETs, leading to lower dynamic power dissipation. Furthermore, the beneficial features of TFETs are retained with different bandgap materials. These reasons suggest that the p-i-n TFET is well suited for low-power applications.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 50 条
[1]   Leakage and performance of zero-Schottky-barrier carbon nanotube transistors [J].
Alam, K ;
Lake, RK .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (06)
[2]   Band-to-band tunneling in carbon nanotube field-effect transistors [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :196805-1
[3]   Comparing carbon nanotube transistors - The ideal choice: A novel tunneling device design [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Chen, ZH ;
Avouris, P .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (12) :2568-2576
[4]   Lateral interband tunneling transistor in silicon-on-insulator [J].
Aydin, C ;
Zaslavsky, A ;
Luryi, S ;
Cristoloveanu, S ;
Mariolle, D ;
Fraboulet, D ;
Deleonibus, S .
APPLIED PHYSICS LETTERS, 2004, 84 (10) :1780-1782
[5]   PROPOSAL FOR SURFACE TUNNEL TRANSISTORS [J].
BABA, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1992, 31 (4B) :L455-L457
[6]   A NEW 3-TERMINAL TUNNEL DEVICE [J].
BANERJEE, S ;
RICHARDSON, W ;
COLEMAN, J ;
CHATTERJEE, A .
IEEE ELECTRON DEVICE LETTERS, 1987, 8 (08) :347-349
[7]   Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering [J].
Bhuwalka, KK ;
Schulze, J ;
Eisele, I .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (05) :909-917
[8]   The high-k solution [J].
Bohr, Mark T. ;
Chau, Robert S. ;
Ghani, Tahir ;
Mistry, Kaizad .
IEEE SPECTRUM, 2007, 44 (10) :29-35
[9]  
Born M, 2006, INT CONF MICROELECTR, P131
[10]   Double-gate tunnel FET with high-κ gate dielectric [J].
Boucart, Kathy ;
Mihai Ionescu, Adrian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (07) :1725-1733