ON THE INTERPOLATION ERROR ESTIMATES FOR Q1 QUADRILATERAL FINITE ELEMENTS

被引:8
作者
Mao, Shipeng [1 ]
Nicaise, Serge [2 ]
Shi, Zhong-Ci [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
[2] Univ Valenciennes & Hainaut Cambresis, LAMAV, ISTV, F-59313 Valenciennes 9, France
关键词
error estimates; quadrilateral elements; isoparametric finite elements; maximal angle condition;
D O I
10.1137/070700486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the relation between the error estimate of the bilinear interpolation on a general quadrilateral and the geometric characters of the quadrilateral. Some explicit bounds of the interpolation error are obtained based on some sharp estimates of the integral over 1/|J|(p-1) for 1 <= p <= infinity on the reference element, where J is the Jacobian of the nona. ne mapping. This allows us to introduce weak geometric conditions (depending on p) leading to interpolation error estimates in the W-1, (p) norm, for any p is an element of [1, infinity), which can be regarded as a generalization of the regular decomposition property (RDP) condition introduced in [ G. Acosta and R. G. Duran, SIAM J. Numer. Anal., 38 ( 2000), pp. 1073-1088] for p = 2 and new RDP conditions (NRDP) for p not equal 2. We avoid the use of the reference family elements, which allows us to extend the results to a larger class of elements and to introduce the NRDP condition in a more unified way. As far as we know, the mesh condition presented in this paper is weaker than any other mesh conditions proposed in the literature for any p with 1 <= p <= infinity.
引用
收藏
页码:467 / 486
页数:20
相关论文
共 33 条
[1]   Error estimates for Q1 isoparametric elements satisfying a weak angle condition [J].
Acosta, G ;
Durán, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) :1073-1088
[2]   The maximum angle condition for mixed and nonconforming elements:: Application to the Stokes equations [J].
Acosta, G ;
Duránn, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :18-36
[3]   An optimal Poincare inequality in L1 for convex domains [J].
Acosta, G ;
Durán, RG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :195-202
[4]  
Acosta G, 2006, NUMER MATH, V104, P129, DOI [10.1007/s00211-006-0018-1, 10.1007/S00211-006-0018-1]
[5]  
Apel T, 2001, NUMER MATH, V89, P193, DOI 10.1007/s002110000256
[6]  
Apel T, 1998, MATH METHOD APPL SCI, V21, P519, DOI 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.3.CO
[7]  
2-I
[8]   Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements [J].
Apel, T .
COMPUTING, 1998, 60 (02) :157-174
[9]  
APEL T, 1999, ADV NUMER MATH
[10]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226