Deep unsupervised learning on a desktop PC: a primer for cognitive scientists

被引:22
作者
Testolin, Alberto [1 ]
Stoianov, Ivilin [1 ]
De Grazia, Michele De Filippo [1 ]
Zorzi, Marco [1 ,2 ]
机构
[1] Univ Padua, Dept Gen Psychol, Computat Cognit Neurosci Lab, I-35131 Padua, Italy
[2] IRCCS San Camillo Neurorehabil Hosp, Venice Lido, Italy
来源
FRONTIERS IN PSYCHOLOGY | 2013年 / 4卷
关键词
deep neural networks; unsupervised learning; hierarchical generative models; cognitive modeling; parallel-computing architectures; GPUs; MPI; computer cluster; EMERGENCE; ALGORITHM; NETWORKS; MODELS;
D O I
10.3389/fpsyg.2013.00251
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.
引用
收藏
页数:10
相关论文
共 47 条
  • [1] ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
  • [2] The Emergent neural modeling system
    Aisa, Brad
    Mingus, Brian
    O'Reilly, Randy
    [J]. NEURAL NETWORKS, 2008, 21 (08) : 1146 - 1152
  • [3] [Anonymous], 2010, MOMENTUM
  • [4] [Anonymous], 2009, P 26 ANN INT C MACHI, DOI DOI 10.1145/1553374.1553453
  • [5] [Anonymous], 2008, ADV NEURAL INFORM PR
  • [6] [Anonymous], MITCSAILTR2010013
  • [7] [Anonymous], 2009, ICML
  • [8] [Anonymous], 2011, P JMLR WORK, DOI DOI 10.1109/IJCNN.2011.6033302
  • [9] Bengio Y., 2006, Advances in Neural Information Processing Systems, V19, DOI DOI 10.7551/MITPRESS/7503.003.0024
  • [10] Learning Deep Architectures for AI
    Bengio, Yoshua
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01): : 1 - 127