Risk-Sensitive Control and an Abstract Collatz-Wielandt Formula

被引:14
作者
Arapostathis, Ari [1 ]
Borkar, Vivek S. [2 ]
Kumar, K. Suresh [3 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, 1 Univ Stn, Austin, TX 78712 USA
[2] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
[3] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Risk-sensitive control; Collatz-Wielandt formula; Nisio semigroup; Variational formulation; Principal eigenvalue; Donsker-Varadhan functional; KREIN-RUTMAN THEOREM;
D O I
10.1007/s10959-015-0616-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The 'value' of infinite horizon risk-sensitive control is the principal eigenvalue of a certain positive operator. For the case of compact domain, Chang has built upon a nonlinear version of the Krein-Rutman theorem to give a 'min-max' characterization of this eigenvalue which may be viewed as a generalization of the classical Collatz-Wielandt formula for the Perron-Frobenius eigenvalue of a nonnegative irreducible matrix. We apply this formula to the Nisio semigroup associated with risk-sensitive control and derive a variational characterization of the optimal risk-sensitive cost. For the linear, i.e., uncontrolled case, this is seen to reduce to the celebrated Donsker-Varadhan formula for principal eigenvalue of a second-order elliptic operator.
引用
收藏
页码:1458 / 1484
页数:27
相关论文
共 17 条
[1]  
[Anonymous], 1990, WILEY INTERSCIENCE S
[2]  
[Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
[3]  
[Anonymous], 2001, Matrix Analysis and Applied Linear Algebra
[4]  
[Anonymous], 2008, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems
[5]  
Arapostathis A., PREPRINT
[6]   An eigenvalue approach to the risk sensitive control problem in near monotone case [J].
Biswas, Anup .
SYSTEMS & CONTROL LETTERS, 2011, 60 (03) :181-184
[7]  
Borkar V.S., 1989, PITMAN RES NOTES MAT, V203
[8]   A nonlinear Krein Rutman theorem [J].
Chang, K. C. .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2009, 22 (04) :542-554
[9]  
Collatz L, 1943, MATH Z, V48, P221
[10]   VARIATIONAL FORMULA FOR PRINCIPAL EIGENVALUE FOR OPERATORS WITH MAXIMUM PRINCIPLE [J].
DONSKER, MD ;
VARADHAN, SRS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (03) :780-783