Existence and multiplicity of solutions for a class of p&q elliptic problems with critical exponent

被引:43
作者
Figueiredo, Giovany M. [1 ]
机构
[1] Fed Univ Para, Fac Matemat, BR-66059 Belem, Para, Brazil
关键词
p & q laplacian; variational methods; critical growth; POSITIVE SOLUTIONS; CRITICAL GROWTH; R-N; EQUATIONS;
D O I
10.1002/mana.201100237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence and multiplicity of nontrivial solutions to the following class of p&q elliptic problems with critical exponent -div(a(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2)del u)-lambda vertical bar u vertical bar(s-2)u+vertical bar u vertical bar gamma*(-2) in Omega, and u - 0 on partial derivative Omega, where Omega subset of R-N is a bounded smooth domain, N >= 3, lambda is a positive parameter and a: R -> R is a function of C-1 class. Here 1 < gamma < N, gamma < s < gamma* or 1 < s < gamma be stated later. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1129 / 1141
页数:13
相关论文
共 21 条
[1]  
Alves CO, 2011, ADV NONLINEAR STUD, V11, P265
[2]  
Alves CO, 2010, DIFFER INTEGRAL EQU, V23, P113
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[5]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]  
Castro A., 1980, 10 C COL MAT
[8]  
Cherfils L., 2004, Commun Pure Appl Anal, V1, P1
[9]  
Costa D. G., 1986, COSTA TOPICOS ANALIS
[10]  
doO JMB, 1997, J MATH ANAL APPL, V207, P104