Force evaluation in the lattice Boltzmann method involving curved geometry

被引:335
作者
Mei, RW [1 ]
Yu, DZ
Shyy, W
Luo, LS
机构
[1] Univ Florida, Dept Aerosp Engn Mech & Engn Sci, Gainesville, FL 32611 USA
[2] NASA, ICASE, Langley Res Ctr, Hampton, VA 23681 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 04期
关键词
D O I
10.1103/PhysRevE.65.041203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum-exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second-order accuracy based on our recent works [Mei , J. Comput. Phys. 155, 307 (1999); ibid. 161, 680 (2000)]. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation [J].
Abe, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) :241-246
[2]   SOLID-FLUID BOUNDARIES IN PARTICLE SUSPENSION SIMULATIONS VIA THE LATTICE BOLTZMANN METHOD [J].
BEHREND, O .
PHYSICAL REVIEW E, 1995, 52 (01) :1164-1175
[3]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[4]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[5]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[6]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[7]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[8]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[9]   On boundary conditions in lattice Boltzmann methods [J].
Chen, SY ;
Martinez, D ;
Mei, RW .
PHYSICS OF FLUIDS, 1996, 8 (09) :2527-2536
[10]   A KNUDSEN LAYER THEORY FOR LATTICE GASES [J].
CORNUBERT, R ;
DHUMIERES, D ;
LEVERMORE, D .
PHYSICA D, 1991, 47 (1-2) :241-259