Electrical and optical performance of InAs/GaSb superlattice LWIR detectors

被引:11
作者
Field, M. [1 ]
Sullivan, G. J. [1 ]
Ikhlassi, A. [1 ]
Grein, C. [2 ]
Flatte, M. E. [3 ,4 ]
Yang, H. [5 ]
Zhong, M. [5 ]
Weimer, M. [5 ]
机构
[1] Rockwell Sci, 1049 Camino Dos Rios, Thousand Oaks, CA 91360 USA
[2] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[3] Univ Iowa, OSTC, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[5] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
来源
QUANTUM SENSING AND NANOPHOTONIC DEVICES III | 2006年 / 6127卷
关键词
infrared; superlattice; strained layer superlattice; type II superlattice; InAs; GaSb;
D O I
10.1117/12.639442
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
InAs/GaSb superlattices are a promising technology for long-wave and very-long-wave infrared photodetectors. Present detectors at these wavelengths are mostly built using bulk HgCdTe (MCT) alloys, where the bandgap is controlled by the mercury-cadmium ratio. In contrast, InAs/GaSb heterostructures control the bandgap by engineering the widths of the layers making up the superlattice. This approach is expected to have important advantages over MCT, notably the tighter control of bandgap uniformity across a sample and the suppression of Auger recombination. InAs/GaSb superlattices have a potential advantage in temperature of operation, uniformity and yield. To realize their inherent potential, however, superlattice materials with low defect density and improved device characteristics must be demonstrated. Here, we report on the growth and characterization of a 9.7 mu m cutoff wavelength InAs/GaSb superlattice detector, with a resistance-area product of R(0)A = 11 Omega cm(2) at 78 K, and an 8.5 mu m cutoff diode with a resistance-area product of R(0)A = 160 Omega cm(2) at 78 K. The devices are p-i-n diodes with a relatively thin intrinsic region of depth 0.5 mu m as the active absorbing region. The measured external quantum efficiencies of 7.1% and 5.4% at 7.9 mu m are not yet large enough to challenge the incumbent MCT technology, but suggest scaling the intrinsic region could be a way forward to potentially useful detectors.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy
    Tang Bao
    Xu Ying-Qiang
    Zhou Zhi-Qiang
    Hao Rui-Ting
    Wang Guo-Wei
    Ren Zheng-Wei
    Niu Zhi-Chuan
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [32] Carrier localization and miniband modeling of InAs/GaSb based type-II superlattice infrared detectors
    Mukherjee, Swarnadip
    Singh, Anuja
    Bodhankar, Aditi
    Muralidharan, Bhaskaran
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (34)
  • [33] High performance focal plane array based on type-II - InAs/GaSb superlattice heterostructures
    Delaunay, Pierre-Yves
    Razeghi, Manijeh
    QUANTUM SENSING AND NANOPHOTONIC DEVICES V, 2008, 6900
  • [34] First-Principles Study of InAs/GaSb Semiconductor Superlattice Structures
    Efimov, Oleg
    Yoon, Young-Gui
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (08) : 1684 - 1687
  • [35] Passivation of long-wave infrared InAs/GaSb strained layer superlattice detectors
    Plis, E.
    Kutty, M. N.
    Myers, S.
    Kim, H. S.
    Gautam, N.
    Dawson, L. R.
    Krishna, S.
    INFRARED PHYSICS & TECHNOLOGY, 2011, 54 (03) : 252 - 257
  • [36] A k.p model of InAs/GaSb type II superlattice infrared detectors
    Klipstein, P. C.
    Livneh, Y.
    Klin, O.
    Grossman, S.
    Snapi, N.
    Glozman, A.
    Weiss, E.
    INFRARED PHYSICS & TECHNOLOGY, 2013, 59 : 53 - 59
  • [37] Characterization of midwave infrared InAs/GaSb superlattice photodiode
    Cervera, C.
    Rodriguez, J. B.
    Chaghi, R.
    Ait-Kaci, H.
    Christol, P.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (02)
  • [38] Growth and characteristics of type-II InAs/GaSb superlattice-based detectors
    Khoshakhlagh, A.
    Ting, D. Z.
    Soibel, A.
    Hoeglund, L.
    Nguyen, J.
    Keo, S. A.
    Liao, A.
    Gunapala, S. D.
    INFRARED REMOTE SENSING AND INSTRUMENTATION XIX, 2011, 8154
  • [39] Type II superlattice technology for LWIR detectors
    Klipstein, P. C.
    Avnon, E.
    Azulai, D.
    Benny, Y.
    Fraenkel, R.
    Glozman, A.
    Hojman, E.
    Klin, O.
    Krasovitsky, L.
    Langof, L.
    Lukomsky, I.
    Nitzani, M.
    Shtrichman, I.
    Rappaport, N.
    Snapi, N.
    Weiss, E.
    Tuito, A.
    INFRARED TECHNOLOGY AND APPLICATIONS XLII, 2016, 9819
  • [40] Characterization of barrier effects in superlattice LWIR detectors
    Rhiger, David R.
    Kvaas, Robert E.
    Harris, Sean F.
    Kolasa, Borys P.
    Hill, Cory J.
    Ting, David Z.
    INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2, 2010, 7660