Electrical and optical performance of InAs/GaSb superlattice LWIR detectors

被引:11
作者
Field, M. [1 ]
Sullivan, G. J. [1 ]
Ikhlassi, A. [1 ]
Grein, C. [2 ]
Flatte, M. E. [3 ,4 ]
Yang, H. [5 ]
Zhong, M. [5 ]
Weimer, M. [5 ]
机构
[1] Rockwell Sci, 1049 Camino Dos Rios, Thousand Oaks, CA 91360 USA
[2] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[3] Univ Iowa, OSTC, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[5] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
来源
QUANTUM SENSING AND NANOPHOTONIC DEVICES III | 2006年 / 6127卷
关键词
infrared; superlattice; strained layer superlattice; type II superlattice; InAs; GaSb;
D O I
10.1117/12.639442
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
InAs/GaSb superlattices are a promising technology for long-wave and very-long-wave infrared photodetectors. Present detectors at these wavelengths are mostly built using bulk HgCdTe (MCT) alloys, where the bandgap is controlled by the mercury-cadmium ratio. In contrast, InAs/GaSb heterostructures control the bandgap by engineering the widths of the layers making up the superlattice. This approach is expected to have important advantages over MCT, notably the tighter control of bandgap uniformity across a sample and the suppression of Auger recombination. InAs/GaSb superlattices have a potential advantage in temperature of operation, uniformity and yield. To realize their inherent potential, however, superlattice materials with low defect density and improved device characteristics must be demonstrated. Here, we report on the growth and characterization of a 9.7 mu m cutoff wavelength InAs/GaSb superlattice detector, with a resistance-area product of R(0)A = 11 Omega cm(2) at 78 K, and an 8.5 mu m cutoff diode with a resistance-area product of R(0)A = 160 Omega cm(2) at 78 K. The devices are p-i-n diodes with a relatively thin intrinsic region of depth 0.5 mu m as the active absorbing region. The measured external quantum efficiencies of 7.1% and 5.4% at 7.9 mu m are not yet large enough to challenge the incumbent MCT technology, but suggest scaling the intrinsic region could be a way forward to potentially useful detectors.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Recent advances in LWIR Type-II InAs/GaSb superlattice photodetectors and focal plane arrays at the Center for Quantum Devices
    Razeghi, Manijeh
    Hoffman, Darin
    Nguyen, Binh -Minh
    Delaunay, Pierre -Yves
    Huang, Edward Kwei-wei
    Tidrow, Meimei Z.
    INFRARED TECHNOLOGY AND APPLICATIONS XXXIV, PTS 1 AND 2, 2008, 6940
  • [22] Optoelectronic Transport Properties of Nanostructured Multi-Quantum Well InAs/GaSb Type II LWIR and MWIR Detectors
    Benaadad, Merieme
    Nafidi, Abdelhakim
    Melkoud, Samir
    Barkissy, Driss
    El Yakoubi, Essediq Youssef
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (12) : 6835 - 6845
  • [23] Very long wavelength type-II InAs/GaSb superlattice infrared detectors
    Hoglund, L.
    Rodriguez, J. B.
    Naureen, S.
    Ivanov, R.
    Asplund, C.
    von Wurtemberg, R. Marcks
    Rossignol, R.
    Christol, P.
    Rouvie, A.
    Brocal, J.
    Saint-Pe, O.
    Costard, E.
    INFRARED TECHNOLOGY AND APPLICATIONS XLIV, 2018, 10624
  • [24] High-performance LWIR superlattice detectors and FPA based on CBIRD design
    Soibel, Alexander
    Jean Nguyen
    Khoshakhlagh, Arezou
    Rafol, Sir B.
    Hoeglund, Linda
    Keo, Sam A.
    Mumolo, Jason M.
    Liu, John
    Liao, Anna
    Ting, David Z. -Y.
    Gunapala, Sarath D.
    INFRARED TECHNOLOGY AND APPLICATIONS XXXVIII, PTS 1 AND 2, 2012, 8353
  • [25] High-performance LWIR superlattice detectors and FPA based on CBIRD design
    Soibel, Alexander
    Nguyen, Jean
    Rafol, Sir B.
    Liao, Anna
    Hoeglund, Linda
    Khoshakhlagh, Arezou
    Keo, Sam A.
    Mumolo, Jason M.
    Liu, John
    Ting, David Z-Y.
    Gunapala, Sarath D.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES IX, 2012, 8268
  • [26] Dark Current Analysis of InAs/GaSb Type II Superlattice Infrared Detectors
    Wang, Xiaohua
    Li, Jingzhen
    Yan, Yong
    Zhang, Meiyu
    Wen, Tao
    Liu, Ming
    Yu, Songlin
    Zhang, Yongzhe
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (11) : 5517 - 5527
  • [27] Long-wavelength InAs/GaSb superlattice double heterojunction infrared detectors using InPSb/InAs superlattice hole barrier
    Liu, Jiafeng
    Zhu, He
    Zhu, Hong
    Li, Meng
    Huai, Yunlong
    Liu, Zhen
    Huang, Yong
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2022, 37 (05)
  • [28] InAs/GaAsSb Type-II Superlattice LWIR Focal Plane Arrays Detectors Grown on InAs Substrates
    Huang, Min
    Chen, Jianxin
    Xu, Zhicheng
    Xu, Jiajia
    Bai, Zhizhong
    Wang, Fangfang
    Zhou, Yi
    Huang, Aibo
    Ding, Ruijun
    He, Li
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2020, 32 (08) : 453 - 456
  • [29] Plasma Treatment for Surface Stabilization in InAs/GaSb Type-II Superlattice LWIR and VLWIR Photodetectors
    Hyun-Jin Lee
    Young Chul Kim
    Jun Ho Eom
    Hyun Chul Jung
    Ko-Ku Kang
    Seong Min Ryu
    Ahreum Jang
    Tae Hee Lee
    Jong Gi Kim
    Young Ho Kim
    Han Jung
    Journal of Electronic Materials, 2022, 51 : 4689 - 4694
  • [30] Plasma Treatment for Surface Stabilization in InAs/GaSb Type-II Superlattice LWIR and VLWIR Photodetectors
    Lee, Hyun-Jin
    Kim, Young Chul
    Eom, Jun Ho
    Jung, Hyun Chul
    Kang, Ko-Ku
    Ryu, Seong Min
    Jang, Ahreum
    Lee, Tae Hee
    Kim, Jong Gi
    Kim, Young Ho
    Jung, Han
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (09) : 4689 - 4694