Electrical and optical performance of InAs/GaSb superlattice LWIR detectors

被引:11
作者
Field, M. [1 ]
Sullivan, G. J. [1 ]
Ikhlassi, A. [1 ]
Grein, C. [2 ]
Flatte, M. E. [3 ,4 ]
Yang, H. [5 ]
Zhong, M. [5 ]
Weimer, M. [5 ]
机构
[1] Rockwell Sci, 1049 Camino Dos Rios, Thousand Oaks, CA 91360 USA
[2] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[3] Univ Iowa, OSTC, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[5] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
来源
QUANTUM SENSING AND NANOPHOTONIC DEVICES III | 2006年 / 6127卷
关键词
infrared; superlattice; strained layer superlattice; type II superlattice; InAs; GaSb;
D O I
10.1117/12.639442
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
InAs/GaSb superlattices are a promising technology for long-wave and very-long-wave infrared photodetectors. Present detectors at these wavelengths are mostly built using bulk HgCdTe (MCT) alloys, where the bandgap is controlled by the mercury-cadmium ratio. In contrast, InAs/GaSb heterostructures control the bandgap by engineering the widths of the layers making up the superlattice. This approach is expected to have important advantages over MCT, notably the tighter control of bandgap uniformity across a sample and the suppression of Auger recombination. InAs/GaSb superlattices have a potential advantage in temperature of operation, uniformity and yield. To realize their inherent potential, however, superlattice materials with low defect density and improved device characteristics must be demonstrated. Here, we report on the growth and characterization of a 9.7 mu m cutoff wavelength InAs/GaSb superlattice detector, with a resistance-area product of R(0)A = 11 Omega cm(2) at 78 K, and an 8.5 mu m cutoff diode with a resistance-area product of R(0)A = 160 Omega cm(2) at 78 K. The devices are p-i-n diodes with a relatively thin intrinsic region of depth 0.5 mu m as the active absorbing region. The measured external quantum efficiencies of 7.1% and 5.4% at 7.9 mu m are not yet large enough to challenge the incumbent MCT technology, but suggest scaling the intrinsic region could be a way forward to potentially useful detectors.
引用
收藏
页数:7
相关论文
共 14 条
[1]   Very-long wave ternary antimonide superlattice photodiode with 21 μm cutoff [J].
Aifer, EH ;
Jackson, EM ;
Boishin, G ;
Whitman, LJ ;
Vurgaftman, I ;
Meyer, JR ;
Culbertson, JC ;
Bennett, BR .
APPLIED PHYSICS LETTERS, 2003, 82 (25) :4411-4413
[2]   Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection [J].
Brown, GJ ;
Szmulowicz, F ;
Mahalingam, K ;
Houston, S ;
Wei, Y ;
Gin, A ;
Razeghi, M .
QUANTUM SENSING: EVOLUTION AND REVOLUTION FROM PAST TO FUTURE, 2003, 4999 :457-466
[3]  
Bürkle L, 2000, APPL PHYS LETT, V77, P1659, DOI 10.1063/1.1310167
[4]   Optoelectronic properties of photodiodes for the mid- and far-infrared based on the InAs/GaSb/AlSb materials family [J].
Fuchs, F ;
Bürkle, L ;
Hamid, R ;
Herres, N ;
Pletschen, W ;
Sah, RE ;
Kiefer, R ;
Schmitz, J .
PHOTODETECTORS: MATERIALS AND DEVICES VI, 2001, 4288 :171-182
[5]   Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J].
Grein, CH ;
Young, PM ;
Flatte, ME ;
Ehrenreich, H .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (12) :7143-7152
[6]   Space Mid-IR detectors from DRS [J].
Hogue, HH ;
Guptill, MT ;
Reynolds, DB ;
Atkins, EW ;
Stapelbroek, MG .
IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 :880-889
[7]   Arsenic cross-contamination in GaSb/InAs superlattices [J].
Jackson, EM ;
Boishin, GI ;
Aifer, EH ;
Bennett, BR ;
Whitman, LJ .
JOURNAL OF CRYSTAL GROWTH, 2004, 270 (3-4) :301-308
[8]   Experimental and theoretical density-dependent absorption spectra in (GaInSb/InAs)/AlGaSb superlattice multiple quantum wells [J].
Olesberg, JT ;
Anson, SA ;
McCahon, SW ;
Flatte, ME ;
Boggess, TF ;
Chow, DH ;
Hasenberg, TC .
APPLIED PHYSICS LETTERS, 1998, 72 (02) :229-231
[9]   Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors [J].
Sullivan, GJ ;
Ikhlassi, A ;
Bergman, J ;
DeWames, RE ;
Waldrop, JR ;
Grein, C ;
Flatté, M ;
Mahalingam, K ;
Yang, H ;
Zhong, M ;
Weimer, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (03) :1144-1148
[10]  
TENNANT WM, COMMUNICATION