Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress

被引:245
|
作者
Jiang, Chaoqiang [1 ,2 ]
Zu, Chaolong [1 ]
Lu, Dianjun [2 ]
Zheng, Qingsong [3 ]
Shen, Jia [1 ]
Wang, Huoyan [2 ]
Li, Decheng [2 ]
机构
[1] Anhui Acad Agr Sci, Maize Res Ctr, Tobacco Res Inst, Hefei 230031, Peoples R China
[2] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China
[3] Nanjing Agr Univ, Coll Nat Resources & Environm Sci, Key Lab Marine Biol, Nanjing 210095, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
SALT TOLERANCE; ABSCISIC-ACID; GROWTH; DEFENSE; PLANTS; SEEDLINGS; ENZYMES; LEAVES; OVEREXPRESSION; HOMEOSTASIS;
D O I
10.1038/srep42039
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanism of selenium-mediated salt tolerance has not been fully clarified. This study investigated the possible role of selenium (Se) in regulating maize salt tolerance. A pot experiment was conducted to investigate the role of Se (0, 1, 5 and 25 mu M Na2SeO3) in photosynthesis, antioxidative capacity and ion homeostasis in maize under salinity. The results showed that Se (1 mu M) relieved the saltinduced inhibitory effects on the plant growth and development of 15-day-old maize plants. Se application (1 mu M) also increased the net photosynthetic rate and alleviated the damage to chloroplast ultrastructure induced by NaCl. The superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased, and ZmMPK5, ZmMPK7 and ZmCPK11 were markedly up-regulated in the roots of Se-treated plants, likely contributing to the improvement of antioxidant defence systems under salinity. Moreover, 1 mu M Se increased K+ in the shoots while decreasing Na+ in the roots, indicating that Se up-regulates ZmNHX1 in the roots, which may be involved in Na+ compartmentalisation under salinity. The findings from this single experiment require repetition together with measurement of reactive oxygen species (ROS), but nevertheless suggest that exogenous Se alleviates salt stress in maize via the improvement of photosynthetic capacity, the activities of antioxidant enzymes and the regulation of Na+ homeostasis.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Effect of exogenous selenium on mineral nutrition and antioxidative capacity in cucumber (Cucumis sativus L.) seedlings under cadmium stress
    Sun, Hongyan
    Wang, Xiaoyun
    Yang, Ni
    Zhou, Huanxin
    Gao, Yifan
    Yu, Jia
    Wang, Xiaoxiao
    PLANT SOIL AND ENVIRONMENT, 2022, 68 (12) : 580 - 590
  • [32] Effect of exogenous nitric oxide on sulfur and nitrate assimilation pathway enzymes in maize (Zea mays L.) under drought stress
    Majeed, Sadia
    Nawaz, Fahim
    Naeem, Muhammad
    Ashraf, Muhammad Yasin
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (12)
  • [33] Genomic Regions Associated With Salinity Stress Tolerance in Tropical Maize (Zea Mays L.)
    Zaidi, Pervez H.
    Shahid, Mohammed
    Seetharam, Kaliyamoorthy
    Vinayan, Madhumal Thayil
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [34] Effect of exogenous nitric oxide on sulfur and nitrate assimilation pathway enzymes in maize (Zea mays L.) under drought stress
    Sadia Majeed
    Fahim Nawaz
    Muhammad Naeem
    Muhammad Yasin Ashraf
    Acta Physiologiae Plantarum, 2018, 40
  • [35] EFFECTS OF EXOGENOUS NITRIC OXIDE ON GLYCINEBETAINE METABOLISM IN MAIZE (ZEA MAYS L.) SEEDLINGS UNDER DROUGHT STRESS
    Zhang, Lixin
    Zhao, Yonggui
    Zhai, Youya
    Gao, Mei
    Zhang, Xifeng
    Wang, Kai
    Nan, Weige
    Liu, Jianchao
    PAKISTAN JOURNAL OF BOTANY, 2012, 44 (06) : 1837 - 1844
  • [36] Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress
    Sun, Yujun
    He, Yunhan
    Irfan, Ali Raza
    Liu, Xinmeng
    Yu, Qiaoqiao
    Zhang, Qian
    Yang, Deguang
    AGRONOMY-BASEL, 2020, 10 (04):
  • [37] Insights into physiological and biochemical responses of Zea mays L. under salinity stress
    Aizaz, Muhammad
    Ullah, Raza
    Ullah, Tariq
    Sami, Rokayya
    Aljabri, Maha
    Althaqafi, Mohammed M.
    AL-Farga, Ammar
    Qari, Sameer H.
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2024, 36 : 1 - 13
  • [38] The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress
    Sultan Köşkeroğlu
    Atilla Levent Tuna
    Acta Physiologiae Plantarum, 2010, 32 : 541 - 549
  • [39] The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress
    Koskeroglu, Sultan
    Tuna, Atilla Levent
    ACTA PHYSIOLOGIAE PLANTARUM, 2010, 32 (03) : 541 - 549
  • [40] EFFECT OF POTASSIUM APPLICATION ON AMMONIUM NUTRITION IN MAIZE (Zea mays L.) UNDER SALT STRESS
    Yousra, Munazza
    Akhtar, Javaid
    Saqib, Zulfiqar A.
    Saqib, M.
    Haq, M. A.
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2013, 50 (01): : 43 - 48