Recent advances in wireless technology and computing have paved the way to the unprecedented rapid growth in demand and availability of mobile networking and services coupled with diverse system/network applications. Such advances triggered the emergence of future generation wireless networks and services to address the increasingly stringent requirements of quality-of-service (QoS) at various levels. The expected growth in wireless network activity and the number of wireless users will enable similar growth in bandwidth-crunching wireless applications to meet the QoS requirements. Mobility prediction of wireless users and units plays a major role in efficient planning and management of the bandwidth resources available in wireless networks. In return, this efficiency will allow better planning and improved overall QoS in terms of continuous service availability and efficient power management. In this paper, we propose extreme learning machines (ELMs), known for universal approximation, to model and predict mobility of arbitrary nodes in a mobile ad hoc network (MANET). MANETs use mobility prediction in location-aided routing and mobility aware topology control protocols. In these protocols, each mobile node is assumed to know its current mobility information (position, speed and movement direction angle). In this way, future node positions are predicted along with future distances between neighboring nodes. Unlike multilayer perceptrons (MLPs), ELMs capture better the existing interaction/correlation between the Cartesian coordinates of the arbitrary nodes leading to more realistic and accurate mobility prediction based on several standard mobility models. Simulation results using standard mobility models illustrate how the proposed prediction method can lead to a significant improvement over conventional methods based on MLPs. Moreover, the proposed solution circumvents the prediction accuracy limitations in current algorithms when predicting future distances between neighboring nodes. The latter prediction is required by some applications like mobility aware topology control protocols. (C) 2013 The Authors. Published by Elsevier B.V.