Bounding volume by systoles of 3-manifolds

被引:6
作者
Katz, Mikhail G. [1 ]
Rudyak, Yuli B. [2 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 78卷
基金
以色列科学基金会; 美国国家科学基金会;
关键词
D O I
10.1112/jlms/jdm105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new systolic volume lower bound for non-orientable n-manifolds, involving the stable 1-systole as well as the codimension-1 systole with coe. cients in Z(2). As an application, we prove that Lusternik-Schnirelmann category and systolic category agree for non-orientable closed manifolds of dimension 3, extending our earlier result in the orientable case. Finally, we prove the homotopy invariance of systolic category.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 54 条
[21]  
Cornea O., 2003, MATH SURVEYS MONOGRA, V103
[22]  
DRANISHNIKOV A, 2007, ARXIVMATH07061625
[23]   REAL FLAT CHAINS, COCHAINS AND VARIATIONAL PROBLEMS [J].
FEDERER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (04) :351-407
[24]   NORMAL AND INTEGRAL CURRENTS [J].
FEDERER, H ;
FLEMING, WH .
ANNALS OF MATHEMATICS, 1960, 72 (03) :458-520
[25]  
Federer H., 1969, GRUNDLEHREN MATH WIS, V153
[26]   LUSTERNIK-SCHNIRELMANN CATEGORY OF 3-MANIFOLDS [J].
GOMEZLARRANAGA, JC ;
GONZALEZACUNA, F .
TOPOLOGY, 1992, 31 (04) :791-800
[27]  
GROMOV M, 1983, J DIFFER GEOM, V18, P1
[28]  
GROMOV M, 1999, PROGR MATH, V152
[29]  
Gromov M., 1996, Actes de la Table Ronde de Geometrie Differentielle (Luminy, 1992), V1, P291
[30]  
Gromov M, 1981, TEXTES MATH, V1