Bounding volume by systoles of 3-manifolds

被引:6
作者
Katz, Mikhail G. [1 ]
Rudyak, Yuli B. [2 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 78卷
基金
以色列科学基金会; 美国国家科学基金会;
关键词
D O I
10.1112/jlms/jdm105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new systolic volume lower bound for non-orientable n-manifolds, involving the stable 1-systole as well as the codimension-1 systole with coe. cients in Z(2). As an application, we prove that Lusternik-Schnirelmann category and systolic category agree for non-orientable closed manifolds of dimension 3, extending our earlier result in the orientable case. Finally, we prove the homotopy invariance of systolic category.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 54 条
[1]   Currents in metric spaces [J].
Ambrosio, L ;
Kirchheim, B .
ACTA MATHEMATICA, 2000, 185 (01) :1-80
[2]   Dirac eigenvalue estimates on two-tori [J].
Ammann, B .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 51 (03) :372-386
[3]  
[Anonymous], ALGEBR GEOM TOPOL
[4]  
Babenko I, 2005, MATH ANN, V333, P157, DOI 10.1007/s00208-005-0668-9
[5]   ASYMPTOTIC INVARIANTS OF SMOOTH MANIFOLDS [J].
BABENKO, IK .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1993, 41 (01) :1-38
[6]   Strong systolic freedom of closed manifolds end of polyhedrons [J].
Babenko, IK .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (04) :1259-+
[7]  
Babenko IK, 2006, ENSEIGN MATH, V52, P109
[8]   Turkey's coal reserves, potential trends and pollution problems of Turkey [J].
Balat, M ;
Ayar, G .
ENERGY EXPLORATION & EXPLOITATION, 2004, 22 (01) :71-81
[9]   Filling area conjecture and ovalless real hyperelliptic surfaces [J].
Bangert, V ;
Croke, C ;
Ivanov, S ;
Katz, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (03) :577-597
[10]  
Bangert V, 2004, COMMUN ANAL GEOM, V12, P703