Controller Tuning by Means of Multi-Objective Optimization Algorithms: A Global Tuning Framework

被引:52
作者
Reynoso-Meza, Gilberto [1 ]
Garcia-Nieto, Sergio [1 ]
Sanchis, Javier [1 ]
Blasco, F. Xavier [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Automat & Informat Ind, Valencia 46022, Spain
关键词
Controller tuning; decision making; evolutionary algorithm; multiobjective optimization; proportional-integral-derivative (PID) tuning; MODEL-PREDICTIVE CONTROL; EVOLUTIONARY ALGORITHMS; DECISION-MAKING; DIFFERENTIAL EVOLUTION; INTELLIGENT CONTROL; PID CONTROLLERS; DESIGN; ROBUST; SYSTEM;
D O I
10.1109/TCST.2012.2185698
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A holistic multi-objective optimization design technique for controller tuning is presented. This approach gives control engineers greater flexibility to select a controller that matches their specifications. Furthermore, for a given controller it is simple to analyze the tradeoff achieved between conflicting objectives. By using the multi-objective design technique it is also possible to perform a global comparison between different control strategies in a simple and robust way. This approach thereby enables an analysis to be made of whether a preference for a certain control technique is justified. This proposal is evaluated and validated in a nonlinear multiple-input multiple-output system using two control strategies: a classical proportional-integral-derivative control scheme and a feedback state controller.
引用
收藏
页码:445 / 458
页数:14
相关论文
共 66 条
[31]   Robust PID controller tuning based on the constrained particle swarm optimization [J].
Kim, Tae-Hyoung ;
Maruta, Ichiro ;
Sugie, Toshiharu .
AUTOMATICA, 2008, 44 (04) :1104-1110
[32]   A framework for visually interactive decision-making and design using evolutionary multi-objective optimization (VI(D)under-barEO) [J].
Kollat, Joshua B. ;
Reed, Patrick .
ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (12) :1691-1704
[33]   Fuzzy control optimized by PSO for vibration suppression of beams [J].
Marinaki, Magdalene ;
Marinakis, Yannis ;
Stavroulakis, Georgios E. .
CONTROL ENGINEERING PRACTICE, 2010, 18 (06) :618-629
[34]   Survey of multi-objective optimization methods for engineering [J].
Marler, RT ;
Arora, JS .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2004, 26 (06) :369-395
[35]   Applied Pareto multi-objective optimization by stochastic solvers [J].
Martinez-Iranzo, Miguel ;
Herrero, Juan M. ;
Sanchis, Javier ;
Blasco, Xavier ;
Garcia-Nieto, Sergio .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (03) :455-465
[36]   Pareto frontier based concept selection under uncertainty, with visualization [J].
Mattson, Christopher A. ;
Messac, Achille .
OPTIMIZATION AND ENGINEERING, 2005, 6 (01) :85-115
[37]   Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach [J].
Melin, P ;
Castillo, O .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (05) :951-955
[38]   The normalized normal constraint method for generating the Pareto frontier [J].
Messac, A ;
Ismail-Yahaya, A ;
Mattson, CA .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2003, 25 (02) :86-98
[39]   Physical programming: Effective optimization for computational design [J].
Messac, A .
AIAA JOURNAL, 1996, 34 (01) :149-158
[40]   Constraint-handling in nature-inspired numerical optimization: Past, present and future [J].
Mezura-Montes, Efren ;
Coello Coello, Carlos A. .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (04) :173-194