An iterative stochastic ensemble method for parameter estimation of subsurface flow models

被引:19
作者
Elsheikh, Ahmed H. [1 ,2 ,3 ]
Wheeler, Mary F. [1 ]
Hoteit, Ibrahim [2 ,3 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Subsurface Modeling, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] KAUST, Dept Earth Sci & Engn, Thuwal, Saudi Arabia
[3] KAUST, Dept Appl Math & Computat Sci, Thuwal, Saudi Arabia
关键词
Parameter estimation; Subsurface flow models; Iterative stochastic ensemble method; Regularization; MONTE-CARLO METHODS; KALMAN FILTER; UNCERTAINTY QUANTIFICATION; RIDGE-REGRESSION; L-CURVE; ALGORITHMS; REGULARIZATION; MINIMIZATION; EFFICIENT;
D O I
10.1016/j.jcp.2013.01.047
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss-Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:696 / 714
页数:19
相关论文
共 54 条
[1]   The Ensemble Kalman Filter in Reservoir Engineering-a Review [J].
Aanonsen, Sigurd I. ;
Naevdal, Geir ;
Oliver, Dean S. ;
Reynolds, Albert C. ;
Valles, Brice .
SPE JOURNAL, 2009, 14 (03) :393-412
[2]  
Allen M, 2006, PREDICTABILITY OF WEATHER AND CLIMATE, P391, DOI 10.1017/CBO9780511617652.016
[3]  
[Anonymous], 2007, Reservoir Simulation-Mathematical tecniques in Oil Recovery
[4]   A mollified ensemble Kalman filter [J].
Bergemann, Kay ;
Reich, Sebastian .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (651) :1636-1643
[5]   THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS [J].
BERKOOZ, G ;
HOLMES, P ;
LUMLEY, JL .
ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 :539-575
[6]   Inverse problem in hydrogeology [J].
Carrera, J ;
Alcolea, A ;
Medina, A ;
Hidalgo, J ;
Slooten, LJ .
HYDROGEOLOGY JOURNAL, 2005, 13 (01) :206-222
[7]   Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother [J].
Chen, Yan ;
Oliver, Dean S. .
MATHEMATICAL GEOSCIENCES, 2012, 44 (01) :1-26
[8]   Shrinkage Algorithms for MMSE Covariance Estimation [J].
Chen, Yilun ;
Wiesel, Ami ;
Eldar, Yonina C. ;
Hero, Alfred O. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) :5016-5029
[9]   Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter [J].
ELSheikh, A. H. ;
Pain, C. C. ;
Fang, F. ;
Gomes, J. L. M. A. ;
Navon, I. M. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (04) :877-897
[10]   Bayesian Reservoir History Matching Considering Model and Parameter Uncertainties [J].
Elsheikh, A. H. ;
Jackson, M. D. ;
Laforce, T. C. .
MATHEMATICAL GEOSCIENCES, 2012, 44 (05) :515-543