Self-shrinkers of the mean curvature flow in arbitrary codimension

被引:3
|
作者
Smoczyk, K [1 ]
机构
[1] Leibniz Univ Hannover, Inst Math, Fak Math & Phys, D-30167 Hannover, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:2983 / 3004
页数:22
相关论文
共 50 条
  • [1] Self-shrinkers for the mean curvature flow in arbitrary codimension
    Claudio Arezzo
    Jun Sun
    Mathematische Zeitschrift, 2013, 274 : 993 - 1027
  • [2] Self-shrinkers for the mean curvature flow in arbitrary codimension
    Arezzo, Claudio
    Sun, Jun
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 993 - 1027
  • [3] A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension
    Cao, Huai-Dong
    Li, Haizhong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) : 879 - 889
  • [4] A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension
    Huai-Dong Cao
    Haizhong Li
    Calculus of Variations and Partial Differential Equations, 2013, 46 : 879 - 889
  • [5] Noncompact self-shrinkers for mean curvature flow with arbitrary genus
    Buzano, Reto
    Nguyen, Huy The
    Schulz, Mario B.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (818): : 35 - 52
  • [6] SELF-SHRINKERS OF THE MEAN CURVATURE FLOW
    Cheng, Qing-Ming
    Peng, Yejuan
    DIFFERENTIAL GEOMETRY OF SUBMANIFOLDS AND ITS RELATED TOPICS, 2014, : 147 - 163
  • [7] Complete self-shrinkers of the mean curvature flow
    Cheng, Qing-Ming
    Peng, Yejuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) : 497 - 506
  • [8] Complete self-shrinkers of the mean curvature flow
    Qing-Ming Cheng
    Yejuan Peng
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 497 - 506
  • [9] Closed Embedded Self-shrinkers of Mean Curvature Flow
    Riedler, Oskar
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [10] Classification and rigidity of self-shrinkers in the mean curvature flow
    Li, Haizhong
    Wei, Yong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (03) : 709 - 734