Time-optimal processes for interacting spin systems

被引:12
作者
Boldt, F. [1 ]
Hoffmann, K. H. [1 ]
Salamon, P. [2 ]
Kosloff, R. [3 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA
[3] Hebrew Univ Jerusalem, Fritz Haber Res Ctr Mol Dynam, IL-91904 Jerusalem, Israel
关键词
QUANTUM CONTROL;
D O I
10.1209/0295-5075/99/40002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reversible adiabatic processes connecting thermal equilibrium states are usually considered to be infinitely slow. Recently, fast reversible adiabatic processes for quantum systems have been discussed. Here we present time-optimal processes for a paradigmatic ensemble of two interacting spin-1/2 systems in an external magnetic field, which previously had been employed as working fluid in a quantum refrigerator. These processes are realized by appropriate bang-bang or quasi-bang-bang controls of the external magnetic field. Explicit control protocols including the necessary times for a transition connecting thermal equilibrium states depending on the limiting conditions on the magnetic field strength are presented. Copyright (C) EPLA, 2012
引用
收藏
页数:5
相关论文
共 50 条
[31]   Laser and Diffusion Driven Optimal Discrimination of Similar Quantum Systems in Resonator [J].
K. A. Lyakhov ;
A. N. Pechen .
Lobachevskii Journal of Mathematics, 2022, 43 :1693-1703
[32]   Optimal control of quantum systems with SU(1, 1) dynamical symmetry [J].
Dong W. ;
Wu R. ;
Wu J. ;
Li C. ;
Tarn T.-J. .
Control Theory and Technology, 2015, 13 (03) :211-220
[33]   Laser and Diffusion Driven Optimal Discrimination of Similar Quantum Systems in Resonator [J].
Lyakhov, K. A. ;
Pechen, A. N. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (07) :1693-1703
[34]   Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains [J].
Zhang, Xiong-Peng ;
Shao, Bin ;
Hu, Shuai ;
Zou, Jian ;
Wu, Lian-Ao .
ANNALS OF PHYSICS, 2016, 375 :435-443
[35]   Storing quantum information in XXZ spin rings with periodically time-controlled interactions [J].
Giampaolo, SM ;
Illuminati, F ;
Mazzarella, G .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) :S337-S340
[36]   Optimal control of quantum systems with SU(1,1)dynamical symmetry [J].
Wenbin DONG ;
Rebing WU ;
Jianwu WU ;
Chunwen LI ;
TzyhJong TARN .
ControlTheoryandTechnology, 2015, 13 (03) :211-220
[37]   Finite-time stabilization control of quantum systems [J].
Kuang, Sen ;
Guan, Xiaoke ;
Dong, Daoyi .
AUTOMATICA, 2021, 123
[38]   Recent progress of quantum control in solid-state single-spin systems [J].
Li Ting-Wei ;
Rong Xing ;
Du Jiang-Feng .
ACTA PHYSICA SINICA, 2022, 71 (06)
[39]   OPTIMAL CONTROL OF CLOSED QUANTUM SYSTEMS VIA B-SPLINES WITH CARRIER WAVES [J].
Petersson, N. Anders ;
Garcia, Fortino .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (06) :A3592-A3616
[40]   Pulse-Fluence-Specified Optimal Control Simulation with Applications to Molecular Orientation and Spin-Isomer-Selective Molecular Alignment [J].
Yoshida, Masataka ;
Nakashima, Kaoru ;
Ohtsuki, Yukiyoshi .
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015), 2015, 1702