Time-optimal processes for interacting spin systems

被引:12
作者
Boldt, F. [1 ]
Hoffmann, K. H. [1 ]
Salamon, P. [2 ]
Kosloff, R. [3 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA
[3] Hebrew Univ Jerusalem, Fritz Haber Res Ctr Mol Dynam, IL-91904 Jerusalem, Israel
关键词
QUANTUM CONTROL;
D O I
10.1209/0295-5075/99/40002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reversible adiabatic processes connecting thermal equilibrium states are usually considered to be infinitely slow. Recently, fast reversible adiabatic processes for quantum systems have been discussed. Here we present time-optimal processes for a paradigmatic ensemble of two interacting spin-1/2 systems in an external magnetic field, which previously had been employed as working fluid in a quantum refrigerator. These processes are realized by appropriate bang-bang or quasi-bang-bang controls of the external magnetic field. Explicit control protocols including the necessary times for a transition connecting thermal equilibrium states depending on the limiting conditions on the magnetic field strength are presented. Copyright (C) EPLA, 2012
引用
收藏
页数:5
相关论文
共 50 条
[21]   Krotov method for optimal control of closed quantum systems [J].
Morzhin, O., V ;
Pechen, A. N. .
RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (05) :851-908
[22]   Admissible Optimal Control for Parameter Estimation in Quantum Systems [J].
Clouatre, Maison ;
Marano, Stefano ;
Falb, Peter L. ;
Win, Moe Z. .
IEEE CONTROL SYSTEMS LETTERS, 2024, 8 :2283-2288
[23]   Stabilization of quantum control in spin-1/2 systems [J].
Ye, Bin ;
Xu, Wenbo .
DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, :982-984
[24]   THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL WITH AN APPLICATION TO QUANTUM SYSTEMS [J].
Bonnard, Bernard ;
Shcherbakova, Nataliya ;
Sugny, Dominique .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (01) :267-292
[25]   Optimal narrowband composite pulses in two-level systems [J].
Liang, Shi-Peng ;
Shi, Zhi-Cheng ;
Song, Jie ;
Xia, Yan .
LASER PHYSICS LETTERS, 2025, 22 (04)
[26]   Real-time two-axis control of a spin qubit [J].
Berritta, Fabrizio ;
Rasmussen, Torbjorn ;
Krzywda, Jan A. ;
van der Heijden, Joost ;
Fedele, Federico ;
Fallahi, Saeed ;
Gardner, Geoffrey C. ;
Manfra, Michael J. ;
van Nieuwenburg, Evert ;
Danon, Jeroen ;
Chatterjee, Anasua ;
Kuemmeth, Ferdinand .
NATURE COMMUNICATIONS, 2024, 15 (01)
[27]   Robust Dynamic Hamiltonian Engineering of Many-Body Spin Systems [J].
Choi, Joonhee ;
Zhou, Hengyun ;
Knowles, Helena S. ;
Landig, Renate ;
Choi, Soonwon ;
Lukin, Mikhail D. .
PHYSICAL REVIEW X, 2020, 10 (03)
[28]   Cooling classical many-spin systems using feedback control [J].
Elsayed, Tarek A. ;
Fine, Boris, V .
PHYSICAL REVIEW B, 2022, 105 (10)
[29]   Control of open quantum systems: case study of the central spin model [J].
Arenz, Christian ;
Gualdi, Giulia ;
Burgarth, Daniel .
NEW JOURNAL OF PHYSICS, 2014, 16
[30]   Time-local optimal control for parameter estimation in the Gaussian regime [J].
Predko, Alexander ;
Albarelli, Francesco ;
Serafini, Alessio .
PHYSICS LETTERS A, 2020, 384 (13)