PT-symmetric dimer of coupled nonlinear oscillators

被引:39
作者
Cuevas, Jesus [1 ]
Kevrekidis, Panayotis G. [2 ]
Saxena, Avadh [3 ,4 ]
Khare, Avinash [5 ]
机构
[1] Univ Seville, Nonlinear Phys Grp, Dept Fis Aplicada 1, Escuela Politecn Super, Seville 41011, Spain
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[5] IISER, Pune 411008, Maharashtra, India
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 03期
基金
美国国家科学基金会;
关键词
INSTABILITIES; STABILITY; MODES; GAIN;
D O I
10.1103/PhysRevA.88.032108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We provide a systematic analysis of a prototypical nonlinear oscillator system respecting PT symmetry i.e., one of them has gain and the other an equal and opposite amount of loss. Starting from the linear limit of the system, we extend considerations to the nonlinear case for both soft and hard cubic nonlinearities identifying symmetric and antisymmetric breather solutions, as well as symmetry-breaking variants thereof. We propose a reduction of the system to a Schrodinger-type PT-symmetric dimer, whose detailed earlier understanding can explain many of the phenomena observed herein, including the PT phase transition. Nevertheless, there are also significant parametric as well as phenomenological potential differences between the two models and we discuss where these arise and where they are most pronounced. Finally, we also provide examples of the evolution dynamics of the different states in their regimes of instability.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Escape dynamics in the discrete repulsive φ4 model [J].
Achilleos, V. ;
Alvarez, A. ;
Cuevas, J. ;
Frantzeskakis, D. J. ;
Karachalios, N. I. ;
Kevrekidis, P. G. ;
Sanchez-Rey, B. .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 244 (01) :1-24
[2]   Discrete breathers and Anderson modes:: two faces of the same phenomenon? [J].
Archilla, JFR ;
MacKay, RS ;
Marín, JL .
PHYSICA D, 1999, 134 (04) :406-418
[3]  
Belova T. I., 1997, Physics-Uspekhi, V40, P359, DOI 10.1070/PU1997v040n04ABEH000227
[4]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[7]   RESONANCE STRUCTURE IN KINK ANTIKINK INTERACTIONS IN PHI-4 THEORY [J].
CAMPBELL, DK ;
SCHONFELD, JF ;
WINGATE, CA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 9 (1-2) :1-32
[8]   Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential [J].
Cartarius, Holger ;
Wunner, Guenter .
PHYSICAL REVIEW A, 2012, 86 (01)
[9]   Spatially inhomogeneous time-periodic propagating waves in anharmonic systems [J].
Cretegny, T ;
Aubry, S .
PHYSICAL REVIEW B, 1997, 55 (18) :11929-11932
[10]   Stability of non-time-reversible phonobreathers [J].
Cuevas, J. ;
Archilla, J. F. R. ;
Romero, F. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (03)