Collapse and revival of the monopole mode of a degenerate Bose gas in an isotropic harmonic trap

被引:9
作者
Straatsma, C. J. E. [1 ,2 ]
Colussi, V. E. [3 ,4 ]
Davis, M. J. [1 ,5 ]
Lobser, D. S. [3 ,4 ]
Holland, M. J. [3 ,4 ]
Anderson, D. Z. [3 ,4 ]
Lewandowski, H. J. [3 ,4 ]
Cornell, E. A. [3 ,4 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[3] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[5] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
COLLECTIVE EXCITATIONS; EINSTEIN CONDENSATION; FREQUENCY-SHIFTS; DYNAMICS; COLLISIONLESS; SIMULATIONS; EQUATION; CHARGE;
D O I
10.1103/PhysRevA.94.043640
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the monopole (breathing) mode of a finite temperature Bose-Einstein condensate in an isotropic harmonic trap recently developed by Lobser et al. [Nat. Phys. 11, 1009 (2015)]. We observe a nonexponential collapse of the amplitude of the condensate oscillation followed by a partial revival. This behavior is identified as being due to beating between two eigenmodes of the system, corresponding to in-phase and out-of-phase oscillations of the condensed and noncondensed fractions of the gas. We perform finite temperature simulations of the system dynamics using the Zaremba-Nikuni-Griffin methodology [J. Low Temp. Phys. 116, 277 (1999)], and find good agreement with the data, thus confirming the two mode description.
引用
收藏
页数:13
相关论文
共 65 条
[1]  
Allen A. J., 2014, Journal of Physics: Conference Series, V544, DOI 10.1088/1742-6596/544/1/012023
[2]   Observable vortex properties in finite-temperature Bose gases [J].
Allen, A. J. ;
Zaremba, E. ;
Barenghi, C. F. ;
Proukakis, N. P. .
PHYSICAL REVIEW A, 2013, 87 (01)
[3]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[4]  
[Anonymous], PHYS REV A
[5]  
BELIAEV ST, 1958, SOV PHYS JETP-USSR, V7, P299
[6]   Projected Gross-Pitaevskii equation theory of finite-temperature collective modes for a trapped Bose gas [J].
Bezett, A. ;
Blakie, P. B. .
PHYSICAL REVIEW A, 2009, 79 (02)
[7]   Collisionless modes of a trapped Bose gas [J].
Bijlsma, MJ ;
Stoof, HTC .
PHYSICAL REVIEW A, 1999, 60 (05) :3973-3981
[8]  
Bird G., 1994, MOL GAS DYNAMICS DIR
[9]  
BIRDSALL C. K., 2004, Series in Plasma Physics
[10]   Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques [J].
Blakie, P. B. ;
Bradley, A. S. ;
Davis, M. J. ;
Ballagh, R. J. ;
Gardiner, C. W. .
ADVANCES IN PHYSICS, 2008, 57 (05) :363-455