The Belle II Pixel Detector Data Acquisition and Reduction System

被引:0
|
作者
Spruck, Bjoern [1 ]
Gessler, Thomas [1 ]
Kuehn, Wolfgang [1 ]
Lange, Jens Soeren [1 ]
Lin, Haichuan [2 ]
Liu, Zhen'An [2 ]
Muenchow, David [1 ]
Xu, Hao [1 ,2 ]
Zhao, Jingzhou [2 ]
机构
[1] Univ Giessen, Inst Phys 2, Giessen, Germany
[2] Chinese Acad Sci, Inst High Energy Phys IHEP, State Key Lab Particle Detect & Elect, Beijing, Peoples R China
来源
2012 18TH IEEE-NPSS REAL TIME CONFERENCE (RT) | 2012年
关键词
Data acquisition; High energy physics instrumentation computing;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The upcoming Belle II experiment is designed to work at a luminosity of 8 x 10(35) cm(-2) s(-1), 40 times higher than its predecessor. The pixel detector of Belle II with its similar to 8 million channels will deliver ten times more data than all other sub-detectors together. A data rate of 22 Gbytes/s is expected for a trigger rate of 30 kHz and an estimated pixel detector occupancy of 3 %, which is by far exceeding the specifications of the Belle II event builder system. Therefore a realtime data reduction of a factor >30 is needed. A hardware platform capable of processing this amount of data is the ATCA based Compute Node (CN). Each CN consists of an xTCA carrier board and four AMC/mu TCA daughter-boards. The carrier board supplies the high bandwidth connectivity to the other CNs in the shelf via Rocket-IO links. In the current prototype design, each AMC board is equipped with a Xilinx Virtex5FX70T FPGA, 4 GB of memory, Gbit Ethernet and two bi-directional optical links allowing for high data transfer rates. IPMI control of mother-and daughter-board is foreseen. One ATCA shelf containing 10 motherboards/40 daughter-boards is sufficient to process the data from the 40 front end boards. The data reduction on the CN is done in two steps. First, the data delivered by the front end electronics via optical links has to be stored in memory until the high level trigger (HLT) decision has been made. This might take, depending on the event topography, up to seconds. This decreases the event rate by a factor >3. In a second step, pixel data of positively triggered events is reduced with the help of regions of interest (ROI), calculated by the HLT from projecting trajectories back to the pixel detector plane. The design allows additional ROI inputs computed from SVD tracklet data as well as from hit cluster properties. The final data reduction is achieved by sending only data within these ROIs to the main event builder.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The Belle II Pixel Detector Data Acquisition and Reduction System
    Spruck, Bjoern
    Gessler, Thomas
    Kuehn, Wolfgang
    Lange, Jens Soeren
    Lin, Haichuan
    Liu, Zhen'An
    Muenchow, David
    Xu, Hao
    Zhao, Jingzhou
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (05) : 3709 - 3713
  • [2] The data acquisition system of the Belle II Pixel Detector
    Muenchow, D.
    Dingfelder, J.
    Gessler, T.
    Konorov, I.
    Kuehn, W.
    Lange, S.
    Lautenbach, K.
    Levit, D.
    Liu, Z.
    Marinas, C.
    Schnell, M.
    Spruck, B.
    Zhao, J.
    JOURNAL OF INSTRUMENTATION, 2014, 9
  • [3] The ONSEN Data Reduction System for the Belle II Pixel Detector
    Gessler, Thomas
    Kuehn, Wolfgang
    Lange, Jens Soeren
    Liu, Zhen'An
    Muenchow, David
    Spruck, Bjoern
    Zhao, Jingzhou
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (03) : 1149 - 1154
  • [4] The Belle II Pixel Detector Data Acquisition and Background Suppression System
    Lautenbacha, K.
    Deschamps, B.
    Dingfelder, J.
    Getzkow, D.
    Gessler, T.
    Konorov, I.
    Kuehn, W.
    Lange, S.
    Levit, D.
    Liu, Z. -A.
    Marinas, C.
    Muenchow, D.
    Rabusov, A.
    Reiter, S.
    Spruck, B.
    Wessels, C.
    Zhao, J.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [5] Beam Test Performance of the ONSEN Data Reduction System for the Belle II Pixel Detector
    Gessler, Thomas
    Kuehn, Wolfgang
    Lange, Jens Soren
    Liu, Zhen'An
    Munchow, David
    Spruck, Bjoern
    Zhao, Jingzhou
    2014 19TH IEEE-NPSS REAL TIME CONFERENCE (RT), 2014,
  • [6] Data Acquisition System for the Calorimeter of the Belle II Detector
    V. V. Zhulanov
    A. S. Kuzmin
    D. V. Matvienko
    M. A. Remnev
    Yu. V. Usov
    Physics of Atomic Nuclei, 2021, 84 : 42 - 44
  • [7] Data Acquisition System for the Calorimeter of the Belle II Detector
    Zhulanov, V. V.
    Kuzmin, A. S.
    Matvienko, D., V
    Remnev, M. A.
    Usov, Yu, V
    PHYSICS OF ATOMIC NUCLEI, 2021, 84 (01) : 42 - 44
  • [8] A clustering engine for data rate reduction in the Belle II pixel detector
    Wassatsch, Andreas
    Herrmann, Sven
    Richter, Rainer H.
    Andricek, Ladislav
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 360 - +
  • [9] Data Acquisition System of the DEPFET Detector for the Belle II Experiment
    Levit, Dmytro
    Konorov, Igor
    Zhuravlev, Boris
    Paul, Stephan
    Gessler, Thomas
    Lange, Soeren
    Muenchow, David
    Spruck, Bjoern
    Kuehn, Wolfgang
    Zhao, Jingzhou
    Liu, Zhen'An
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [10] Data acquisition system for Belle II
    Nakao, M.
    Higuchi, T.
    Itoh, R.
    Suzuki, S. Y.
    JOURNAL OF INSTRUMENTATION, 2010, 5