On an algorithm for dynamic reconstruction of the input

被引:9
作者
Blizorukova, M. S. [1 ]
Maksimov, V. I.
机构
[1] Ural Fed Univ, Ekaterinburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Lebesgue Measurable Function; Dynamic Inverse Problem; Dynamic Reconstruction; Metody Resheniya; Auxiliary Construction;
D O I
10.1134/S0012266113010096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of dynamic reconstruction of the input in a system described by a vector differential equation and nonlinear in the state variable. We indicate an algorithm that is stable under information noises and computational errors and is aimed at infinite system operation time. The algorithm is based on the dynamic regularization method.
引用
收藏
页码:88 / 100
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1974, Pozitsionnye differentsial'nye igry (Positional Differential Games)
[2]  
[Anonymous], 1983, IZV AKAD NAUK USSR T
[3]  
Barbashin E.A., 1967, Introduction to Stability Theory
[4]  
Kryazhimskii A. V., 2008, J INVERSE ILL-POSE P, V16, P1
[5]   Resource-saving infinite-horizon tracking under uncertain input [J].
Kryazhimskiy, Arkady ;
Maksimov, Vyacheslav .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) :1135-1140
[6]  
Maksimov V.I, 2000, ZADACHI DINAMICHESKO
[7]  
Osipov Y. S., 1995, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions
[8]  
Osipov Yu.S., 2011, Methods of Dynamic Reconstruction of Inputs of Control Systems
[9]  
Tikhonov A.N., 1979, Methods for Solving Incorrect Problems
[10]  
[No title captured]