Chaos in a class of non-autonomous discrete systems

被引:40
作者
Wu, Xinxing [1 ]
Zhu, Peiyong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math, Chengdu 611731, Sichuan, Peoples R China
关键词
Non-autonomous discrete system; Chaos; Sensitivity; n-th iterate system; DISTRIBUTIONAL CHAOS; DYNAMICAL-SYSTEMS; 3; VERSIONS; INTERVAL;
D O I
10.1016/j.aml.2012.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let integral(1,infinity) = (f(n))(n=i)(infinity) be a sequence of continuous maps defined on a compact metric space which converges uniformly to a map f. We prove that the chaotic behaviour of sequences with the form (f(n) o ... o f(1))(x) is inherited under iterations. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:431 / 436
页数:6
相关论文
共 18 条
[1]   Li-Yorke sensitivity [J].
Akin, E ;
Kolyada, S .
NONLINEARITY, 2003, 16 (04) :1421-1433
[2]   The three versions of distributional chaos [J].
Balibrea, F ;
Smítal, J ;
Stefánková, M .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1581-1583
[3]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[4]   Li-Yorke chaos in a class of nonautonomous discrete systems [J].
Canovas, Jose S. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (04) :479-486
[5]   Chaos in nonautonomous discrete dynamical systems [J].
Dvorakova, J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) :4649-4652
[6]   On a problem of iteration invariants for distributional chaos [J].
Dvorakova, J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) :785-787
[7]   Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures [J].
Elaydi, S ;
Rober, JS .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (4-5) :337-346
[8]  
Kolyada S, 1999, FUND MATH, V160, P161
[9]  
Kolyada S., 1996, Random and Computational Dynamics, V4, P205
[10]   A note on the three versions of distributional chaos [J].
Li, Risong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :1993-1997