Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress

被引:88
|
作者
Xu, Jing [1 ]
Xing, Xiao-Juan [1 ]
Tian, Yong-Sheng [1 ]
Peng, Ri-He [1 ]
Xue, Yong [1 ]
Zhao, Wei [1 ]
Yao, Quan-Hong [1 ]
机构
[1] Shanghai Acad Agr Sci, Biotechnol Res Inst, Shanghai 201106, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 09期
关键词
OVER-EXPRESSION; ABSCISIC-ACID; HEAVY-METAL; TOLERANCE; GENE; PROLINE; ROLES; OVEREXPRESSION; MECHANISMS; SEEDLINGS;
D O I
10.1371/journal.pone.0136960
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress
    Xu, Jing
    Zheng, Ai-Qing
    Xing, Xiao-Juan
    Chen, Lei
    Fu, Xiao-Yan
    Peng, Ri-He
    Tian, Yong-Sheng
    Yao, Quan-Hong
    BIOCHEMISTRY-MOSCOW, 2018, 83 (06) : 755 - 765
  • [2] Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress
    Jing Xu
    Ai-Qing Zheng
    Xiao-Juan Xing
    Lei Chen
    Xiao-Yan Fu
    Ri-He Peng
    Yong-Sheng Tian
    Quan-Hong Yao
    Biochemistry (Moscow), 2018, 83 : 755 - 765
  • [3] Enhancement of phenol stress tolerance in transgenic Arabidopsis plants overexpressing glutathione S-transferase
    Xu, Jing
    Tian, Yong-Sheng
    Xing, Xiao-Juan
    Xu, Zhi-Sheng
    Zhu, Bo
    Fu, Xiao-Yan
    Peng, Ri-He
    Yao, Quan-Hong
    PLANT GROWTH REGULATION, 2017, 82 (01) : 37 - 45
  • [4] Enhancement of phenol stress tolerance in transgenic Arabidopsis plants overexpressing glutathione S-transferase
    Jing Xu
    Yong-Sheng Tian
    Xiao-Juan Xing
    Zhi-Sheng Xu
    Bo Zhu
    Xiao-Yan Fu
    Ri-He Peng
    Quan-Hong Yao
    Plant Growth Regulation, 2017, 82 : 37 - 45
  • [5] PeGSTU58, a Glutathione S-Transferase from Populus euphratica, Enhances Salt and Drought Stress Tolerance in Transgenic Arabidopsis
    Meng, Huijing
    Zhao, Jinna
    Yang, Yanfei
    Diao, Kehao
    Zheng, Guangshun
    Li, Tao
    Dai, Xinren
    Li, Jianbo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [6] Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen
    Yu, T
    Li, YS
    Chen, XF
    Hu, J
    Chang, X
    Zhu, YG
    JOURNAL OF PLANT PHYSIOLOGY, 2003, 160 (11) : 1305 - 1311
  • [7] Overexpression of Maize Glutathione S-Transferase ZmGST26 Decreases Drought Resistance of Arabidopsis
    Jiang, Yushi
    Zhang, Yuzhe
    Duan, Ruijie
    Fan, Jiayi
    Jiao, Peng
    Sun, Hongji
    Guan, Shuyan
    Liu, Siyan
    AGRONOMY-BASEL, 2022, 12 (12):
  • [8] Overexpression of glutathione S-transferase gene increases salt tolerance of arabidopsis
    Y. C. Qi
    W. Q. Liu
    L. Y. Qiu
    S. M. Zhang
    L. Ma
    H. Zhang
    Russian Journal of Plant Physiology, 2010, 57 : 233 - 240
  • [9] Overexpression of glutathione S-transferase gene increases salt tolerance of arabidopsis
    Qi, Y. C.
    Liu, W. Q.
    Qiu, L. Y.
    Zhang, S. M.
    Ma, L.
    Zhang, H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2010, 57 (02) : 233 - 240
  • [10] Drought and Salt Stress Tolerance of an Arabidopsis Glutathione S-Transferase U17 Knockout Mutant Are Attributed to the Combined Effect of Glutathione and Abscisic Acid
    Chen, Jui-Hung
    Jiang, Han-Wei
    Hsieh, En-Jung
    Chen, Hsing-Yu
    Chien, Ching-Te
    Hsieh, Hsu-Liang
    Lin, Tsan-Piao
    PLANT PHYSIOLOGY, 2012, 158 (01) : 340 - 351