Time-reversal symmetry and random polynomials

被引:4
作者
Braun, D
Kus, M
Zyczkowski, K
机构
[1] POLISH ACAD SCI,CTR THEORET PHYS,WARSAW,POLAND
[2] JAGIELLONIAN UNIV,INST FIZ,KRAKOW,POLAND
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 06期
关键词
D O I
10.1088/0305-4470/30/6/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyse the density of roots of random polynomials where each complex coefficient is constructed of a random modulus and a fixed, deterministic phase. The density of roots is shown to possess a singular component only in the case for which the phases increase linearly with the index of coefficients. This means that, contrary to earlier belief, eigenvectors of a typical quantum chaotic system with some antiunitary symmetry will not display a clustering curve in the stellar representation. Moreover, a class of time-reverse invariant quantum systems is shown, for which spectra display fluctuations characteristic of orthogonal ensemble, while eigenvectors confer to predictions of unitary ensemble.
引用
收藏
页码:L117 / L123
页数:7
相关论文
共 16 条
[1]   Quantum chaotic dynamics and random polynomials [J].
Bogomolny, E ;
Bohigas, O ;
Leboeuf, P .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (5-6) :639-679
[2]   DISTRIBUTION OF ROOTS OF RANDOM POLYNOMIALS [J].
BOGOMOLNY, E ;
BOHIGAS, O ;
LEBOEUF, P .
PHYSICAL REVIEW LETTERS, 1992, 68 (18) :2726-2729
[3]   HOW MANY ZEROS OF A RANDOM POLYNOMIAL ARE REAL [J].
EDELMAN, A ;
KOSTLAN, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 32 (01) :1-37
[4]  
Haake F., 1987, Zeitschrift fur Physik B (Condensed Matter), V65, P381, DOI 10.1007/BF01303727
[5]   RANDOM-MATRIX THEORY AND EIGENMODES OF DYNAMIC-SYSTEMS [J].
HAAKE, F ;
ZYCZKOWSKI, K .
PHYSICAL REVIEW A, 1990, 42 (02) :1013-1016
[6]  
Haake F., 1991, QUANTUM SIGNATURES C
[7]   ENTROPY OF RANDOM QUANTUM STATES [J].
JONES, KRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23) :L1247-L1251
[8]   UNIVERSALITY OF EIGENVECTOR STATISTICS OF KICKED TOPS OF DIFFERENT SYMMETRIES [J].
KUS, M ;
MOSTOWSKI, J ;
HAAKE, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22) :L1073-L1077
[9]   SYMMETRY VERSUS DEGREE OF LEVEL REPULSION FOR KICKED QUANTUM-SYSTEMS [J].
KUS, M ;
SCHARF, R ;
HAAKE, F .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 66 (01) :129-134
[10]   Universal fluctuations of zeros of chaotic wavefunctions [J].
Leboeuf, P ;
Shukla, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (16) :4827-4835