Analysis by multiphase multicomponent model of iron ore sintering based on alternative steelworks gaseous fuels

被引:23
作者
de Castro, J. A. [1 ,2 ]
Nath, N. [3 ]
Franca, A. B. [1 ]
Guilherme, V. S. [1 ]
Sasaki, Y. [2 ]
机构
[1] Univ Fed Fluminense, Grad Program Met Engn, BR-27255125 Volta Redonda, RJ, Brazil
[2] Pohang Univ Sci & Technol, Grad Inst Ferrous Technol, Environm Met Lab, Pohang 790784, South Korea
[3] JSPMs Rajarshi Shahu Coll Engn, Dept Mech Engn, Pune 411033, Maharashtra, India
关键词
Sintering; Modelling; Fuels; COG; NG; Multiphase flow; MATHEMATICAL-MODEL; SIMULATION; BEHAVIOR;
D O I
10.1179/1743281212Y.0000000008
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
This paper presents the numerical simulation of the technology of gaseous fuel utilisation for iron ore sintering. The proposed methodology is to partially replace the solid fuel by steelworks gases. A multiphase mathematical model based on transport equations of momentum, energy and chemical species coupled with chemical reaction and phase transformations was proposed to analyse temperature distributions of the process. A base case of actual industrial operation of a large sintering machine was monitored with thermocouples inserted into the sinter bed to validate the model. The model was used to predict four cases of fuel gas utilisation: feeding from N01 to N15 wind boxes with blast furnace gas (BFG); natural gas (NG); coke oven gas (COG); and a 50-50 mixture of BFG and COG. The model predictions indicated that for all cases the sintering zone is enlarged and the solid fuel consumption could be decreased.
引用
收藏
页码:605 / 613
页数:9
相关论文
共 21 条
[11]   CALCULATION OF FLUID-FLOWS WITH STAGGERED AND NONSTAGGERED CURVILINEAR NONORTHOGONAL GRIDS - THE THEORY [J].
MELAAEN, MC .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1992, 21 (01) :1-19
[12]   Modeling and simulation of heat front propagation in the iron ore sintering process [J].
Mitterlehner, J ;
Loeffler, G ;
Winter, F ;
Hofbauer, H ;
Schmid, H ;
Zwittag, E ;
Buergler, TH ;
Pammer, O ;
Stiasny, H .
ISIJ INTERNATIONAL, 2004, 44 (01) :11-20
[13]   Assessment of blast furnace behaviour through softening-melting test [J].
Nandy, B ;
Chandra, S ;
Bhattacharjee, D ;
Ghosh, D .
IRONMAKING & STEELMAKING, 2006, 33 (02) :111-119
[14]   Dynamic process modelling of iron ore sintering [J].
Nath, NK ;
DaSilva, AJ ;
Chakraborti, N .
STEEL RESEARCH, 1997, 68 (07) :285-292
[15]   Blast furnace burden softening and melting phenomena: Part III. Melt onset and initial microstructural transformations in pellets [J].
Nogueira, Paulo F. ;
Fruehan, Richard J. .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2006, 37 (04) :551-558
[16]  
Nogueira PF, 2006, P 4 INT C SCI TECHN, V1, P671
[17]  
Omori Y., 1987, BLAST FURNACE MATH M, P631
[18]   Development of Secondary-fuel Injection Technology for Energy Reduction in the Iron Ore Sintering Process [J].
Oyama, Nobuyuki ;
Iwami, Yuji ;
Yamamoto, Tetsuya ;
Machida, Satoshi ;
Higuchi, Takahide ;
Sato, Hideaki ;
Sato, Michitaka ;
Takeda, Kanji ;
Watanabe, Yoshinori ;
Shimizu, Masakata ;
Nishioka, Koki .
ISIJ INTERNATIONAL, 2011, 51 (06) :913-921
[19]   Effect of High-phosphorous Iron Ore Distribution in Quasi-particle on Melt Fluidity and Sinter Bed Permeability during Sintering [J].
Oyama, Nobuyuki ;
Higuchi, Takahide ;
Machida, Satoshi ;
Sato, Hideaki ;
Takeda, Kanji .
ISIJ INTERNATIONAL, 2009, 49 (05) :650-658
[20]   A MATHEMATICAL-MODEL FOR THE PREDICTION OF GRANULE SIZE DISTRIBUTION FOR MULTICOMPONENT SINTER FEED [J].
WATERS, AG ;
LITSTER, JD ;
NICOL, SK .
ISIJ INTERNATIONAL, 1989, 29 (04) :274-283