DIRICHLET HEAT KERNEL ESTIMATES FOR Δα/2 + Δβ/2

被引:34
作者
Chen, Zhen-Qing [1 ]
Kim, Panki [2 ]
Song, Renming [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
BOUNDARY HARNACK PRINCIPLE; GREEN-FUNCTIONS; FRACTIONAL LAPLACIAN;
D O I
10.1215/ijm/1348505533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For d >= 1 and 0 < beta < alpha < 2, consider a family of pseudo differential operators {Delta(alpha) + a(beta) Delta(beta/2); a is an element of [0, 1]} on R-d that evolves continuously from Delta(alpha/2) to Delta(alpha/2) + Delta(beta/2). It gives arise to a family of Levy processes {X-a, a is an element of [0, 1]} on R-d, where each X-a is the independent sum of a symmetric alpha-stable process and a symmetric beta-stable process with weight a. For any C-1,C-1 open set D subset of R-d, we establish explicit sharp two-sided estimates, which are uniform in a is an element of (0,1], for the transition density function of the subprocess X-a,X-D of X-a killed upon leaving the open set D. The infinitesimal generator of X-a,X-D is the nonlocal operator Delta(alpha) + a(beta) Delta(beta/2) with zero exterior condition on D-c. As consequences of these sharp heat kernel estimates, we obtain uniform sharp Green function estimates for X-a,X-D and uniform boundary Harnack principle for X-a in D with explicit decay rate.
引用
收藏
页码:1357 / 1392
页数:36
相关论文
共 31 条
[1]  
Bogdan K, 1997, STUD MATH, V123, P43
[2]   Censored stable processes [J].
Bogdan, K ;
Burdzy, K ;
Chen, ZQ .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (01) :89-152
[3]  
Bogdan K., 2000, Probab. Math. Statist., V20, P293
[4]   HEAT KERNEL ESTIMATES FOR THE FRACTIONAL LAPLACIAN WITH DIRICHLET CONDITIONS [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz ;
Ryznar, Michal .
ANNALS OF PROBABILITY, 2010, 38 (05) :1901-1923
[5]   HEAT KERNEL OF FRACTIONAL LAPLACIAN IN CONES [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz .
COLLOQUIUM MATHEMATICUM, 2010, 118 (02) :365-377
[6]   Heat kernel estimates for jump processes of mixed types on metric measure spaces [J].
Chen, Zhen-Qing ;
Kumagai, Takashi .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :277-317
[7]   BOUNDARY HARNACK PRINCIPLE FOR Δ + Δα/2 [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming ;
Vondracek, Zoran .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) :4169-4205
[8]   SHARP HEAT KERNEL ESTIMATES FOR RELATIVISTIC STABLE PROCESSES IN OPEN SETS [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
ANNALS OF PROBABILITY, 2012, 40 (01) :213-244
[9]   Heat kernel estimates for δ+δα/2 in C1, 1 open sets [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 :58-80
[10]   Green function estimates for relativistic stable processes in half-space-like open sets [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (05) :1148-1172