Microstructural evolution and its influence on creep and stress relaxation in nanocrystalline Ni

被引:56
作者
Cao, Z. H. [1 ]
Wang, L. [1 ]
Hu, K. [1 ]
Huang, Y. L. [2 ]
Meng, X. K. [1 ]
机构
[1] Nanjing Univ, Inst Mat Engn, Natl Lab Solid State Microstruct, Coll Engn & Appl Sci, Nanjing, Jiangsu, Peoples R China
[2] Xiangtan Univ, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Dislocation density; Creep; Stress relaxation; Nanocrystalline; Deformation; STRAIN-RATE SENSITIVITY; DISLOCATION DENSITY EVOLUTION; HALL-PETCH BREAKDOWN; MECHANICAL-BEHAVIOR; PLASTIC-DEFORMATION; ACTIVATION VOLUME; GRAIN; METALS; SIZE; SUPERPLASTICITY;
D O I
10.1016/j.actamat.2012.08.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Indentation creep and stress relaxation tests were performed on rolled and annealed nanocrystalline (NC) Ni to study the influence of microstructure evolution on plastic deformation behavior. Dislocation density (rho) increases with increasing rolling strain, reaching a maximum at 20% strain, followed by a decrease at larger strain. The rho of Ni decreases significantly with increasing annealing temperature. Softening behavior is observed in NC Ni with grain size <40 nm, i.e., an inverse-like Hall-Petch effect. For rolling NC Ni, both creep strain rate and rate sensitivity first increase and then decrease, while those of annealed Ni continuously decrease. With increasing grain size, creep activation volume unusually decreases first, then starts to rise, which is different from that of coarse-grained metal. A model involving dislocation annihilation and emission at grain boundaries under indenters is used to explain the anomalous behavior of rolled and annealed Ni, respectively. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6742 / 6754
页数:13
相关论文
共 65 条
[1]   Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J].
Asaro, RJ ;
Suresh, S .
ACTA MATERIALIA, 2005, 53 (12) :3369-3382
[2]   Dislocation nucleation in bcc Ta single crystals studied by nanoindentation [J].
Biener, Monika M. ;
Biener, Juergen ;
Hodge, Andrea M. ;
Hamza, Alex V. .
PHYSICAL REVIEW B, 2007, 76 (16)
[3]   Cooperative Grain Boundary Sliding and Migration Process in Nanocrystalline Solids [J].
Bobylev, S. V. ;
Morozov, N. F. ;
Ovid'ko, I. A. .
PHYSICAL REVIEW LETTERS, 2010, 105 (05)
[4]   Plastic deformation with reversible peak broadening in nanocrystalline nickel [J].
Budrovic, Z ;
Van Swygenhoven, H ;
Derlet, PM ;
Van Petegem, S ;
Schmitt, B .
SCIENCE, 2004, 304 (5668) :273-276
[5]   Rolling deformation induced reduction of rate sensitivity and enhancement of hardness in nanocrystalline NiFe alloys [J].
Cao, Z. H. ;
Li, P. Y. ;
Jiang, Z. H. ;
Meng, X. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (29)
[6]   Indentation size dependent plastic deformation of nanocrystalline and ultrafine grain Cu films at nanoscale [J].
Cao, Z. H. ;
Lu, H. M. ;
Meng, X. K. ;
Ngan, A. H. W. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
[7]   The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale [J].
Cao, Zhenhua ;
She, Qianwei ;
Huang, Yongli ;
Meng, Xiangkang .
NANOSCALE RESEARCH LETTERS, 2011, 6
[8]   What is behind the inverse Hall-Petch effect in nanocrystalline materials? [J].
Carlton, C. E. ;
Ferreira, P. J. .
ACTA MATERIALIA, 2007, 55 (11) :3749-3756
[9]   Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test [J].
Chang, Shou-Yi ;
Lee, Yu-Shuien ;
Chang, Ting-Kui .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 423 (1-2) :52-56
[10]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918