Fuzzy Biclustering for DNA Microarray Data Analysis

被引:0
作者
Han, Lixin [1 ]
Yan, Hong [2 ,3 ]
机构
[1] Nanjing Univ Technol, Dept Comp Sci & Engn, Nanjing, Peoples R China
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Peoples R China
来源
2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5 | 2008年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy biclustering analysis is a useful tool for identifying relevant subsets of microarray data. This paper proposes a fuzzy biclustering clustering method for microarray data analysis. The method employs a combination of the Nelder-Mead and min-max algorithm to construct hierarchically structured biclustering. The method can automatically identify the groups of genes that show similar expression patterns under a specific subset of the samples.
引用
收藏
页码:1134 / +
页数:3
相关论文
共 18 条
[1]  
CHENG Y, 2000, P 8 INT C INT SYST M, P93
[2]   An updated survey of GA-based multiobjective optimization techniques [J].
Coello, CAC .
ACM COMPUTING SURVEYS, 2000, 32 (02) :109-143
[3]   MOSES: A multiobjective optimization tool for engineering design [J].
Coello, CAC ;
Christiansen, AD .
ENGINEERING OPTIMIZATION, 1999, 31 (03) :337-368
[4]  
Duda RO, 2006, PATTERN CLASSIFICATI
[5]  
Fei X., 2007, P 3 INT S BIOINF RES, P1
[6]   DIRECT CLUSTERING OF A DATA MATRIX [J].
HARTIGAN, JA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (337) :123-&
[7]  
KELLEY CT, 1997, DETECTION REMEDIATIO
[8]  
Kurnmamuru K, 2003, IEEE INT CONF FUZZY, P772
[9]   Convergence properties of the Nelder-Mead simplex method in low dimensions [J].
Lagarias, JC ;
Reeds, JA ;
Wright, MH ;
Wright, PE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) :112-147
[10]   Biclustering algorithms for biological data analysis: A survey [J].
Madeira, SC ;
Oliveira, AL .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2004, 1 (01) :24-45