Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation

被引:63
作者
Yang, Guoliang [1 ]
Lei, Weiwei [1 ]
Chen, Cheng [1 ]
Qin, Si [1 ]
Zhang, Liangzhu [1 ]
Su, Yuyu [1 ]
Wang, Jiemin [1 ]
Chen, Zhiqiang [1 ]
Sun, Lu [1 ]
Wang, Xungai [1 ]
Liu, Dan [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Waurn Ponds Campus,Locked Bag 20000, Geelong, Vic 3220, Australia
基金
澳大利亚研究理事会;
关键词
Ti3C2Tx membrane; Electricity generation; Nanofluidic; Pressure-driven; PIEZOELECTRIC GENERATORS; IONS;
D O I
10.1016/j.nanoen.2020.104954
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a two-dimensional (2D) electrokinetic energy conversion device based on ultrathin laminated Ti3C2Tx membrane (TCM) driven by pressure gradients. The applied pressure, pH, lateral size of Ti3C2Tx nanosheets and membrane thickness were investigated. The results revealed that these parameters could remarkably regulate the electricity generation with TCMs. The TCMs with abundant negatively charged 2D nanocapillaries produced high streaming current density of 1.3 mA m(-2) and output power density of 0.29 mu W m(-2) under 5 kPa in 0.01 M aqueous solution of sodium chloride. The MXene membrane generators present good solution compatibility for electrolytes in different alkali metal ions and wide pH range (4-10). This work extends the application of MXenes providing a new platform for energy conversion from natural and daily-life environment.
引用
收藏
页数:8
相关论文
共 57 条
[41]   Slip-enhanced electrokinetic energy conversion in nanofluidic channels [J].
Ren, Yongqiang ;
Stein, Derek .
NANOTECHNOLOGY, 2008, 19 (19)
[42]   Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J].
Shahzad, Faisal ;
Alhabeb, Mohamed ;
Hatter, Christine B. ;
Anasori, Babak ;
Hong, Soon Man ;
Koo, Chong Min ;
Gogotsi, Yury .
SCIENCE, 2016, 353 (6304) :1137-1140
[43]   New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting [J].
Shepelin, Nick A. ;
Glushenkov, Alexey M. ;
Lussini, Vanessa C. ;
Fox, Phillip J. ;
Dicinoski, Greg W. ;
Shapter, Joseph G. ;
Ellis, Amanda V. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (04) :1143-1176
[44]   Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube [J].
Siria, Alessandro ;
Poncharal, Philippe ;
Biance, Anne -Laure ;
Fulcrand, Remy ;
Blase, Xavier ;
Purcell, Stephen T. ;
Bocquet, Lyderic .
NATURE, 2013, 494 (7438) :455-458
[45]   Streaming currents in a single nanofluidic channel [J].
van der Heyden, FHJ ;
Stein, D ;
Dekker, C .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[46]   Power generation by pressure-driven transport of ions in nanofluidic channels [J].
van der Heyden, Frank H. J. ;
Bonthuis, Douwe Jan ;
Stein, Derek ;
Meyer, Christine ;
Dekker, Cees .
NANO LETTERS, 2007, 7 (04) :1022-1025
[47]   Electrokinetic energy conversion efficiency in nanofluidic channels [J].
van der Heyden, Frank H. J. ;
Bonthuis, Douwe Jan ;
Stein, Derek ;
Meyer, Christine ;
Dekker, Cees .
NANO LETTERS, 2006, 6 (10) :2232-2237
[48]   Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers [J].
Volkov, AG ;
Paula, S ;
Deamer, DW .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1997, 42 (02) :153-160
[49]   Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges [J].
Wang, Hou ;
Wu, Yan ;
Yuan, Xingzhong ;
Zeng, Guangming ;
Zhou, Jin ;
Wang, Xin ;
Chew, Jia Wei .
ADVANCED MATERIALS, 2018, 30 (12)
[50]   Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes [J].
Xiao, Kai ;
Giusto, Paolo ;
Wen, Liping ;
Jiang, Lei ;
Antonietti, Markus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (32) :10123-10126