Infiltrated SrTiO3: FeCr-based Anodes for Metal-Supported SOFC

被引:16
作者
Blennow, P. [1 ]
Sudireddy, B. R. [1 ]
Persson, A. H. [1 ]
Klemenso, T. [1 ]
Nielsen, J. [1 ]
Thyden, K. [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark
关键词
Fuel Cell; Infiltration; Metal-Support; SOFC; Strontium Titanate; OXIDE FUEL-CELLS; ELECTRICAL CHARACTERIZATION; ELECTROCHEMICAL CHARACTERIZATION; PERFORMANCE; TITANATES; DIFFUSION;
D O I
10.1002/fuce.201200176
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The concept of using electronically conducting anode backbones with subsequent infiltration of electrocatalytic active materials has been used to develop an alternative solid oxide fuel cell (SOFC) design based on a ferritic stainless steel support. The anode backbone consists of a composite made of Nb-doped SrTiO3 (STN) and FeCr stainless steel. A number of different experimental routes and analysis techniques have been used to evaluate the microstructural and chemical changes occurring in the composite anode layer during electrochemical testing at intermediate temperatures (650 degrees C). STN and FeCr stainless steel was found to be compatible on the macro-scale level, however, some micro-scale chemical interaction was observed. The composite anode backbone showed a promising corrosion resistance, with a decrease in formation of Cr2O3 on the FeCr particles, when exposed to SOFC operating conditions. The electronic conductivity of the infiltrated anode backbone furthermore showed good redox stability properties. Electrochemical testing of metal-supported cells having the STN:FeCr composite anode backbone infiltrated with electrocatalysts showed comparable performance and promising durability properties compared with other metal-supported cell designs presented in the literature. This work illustrates the potential advantages and challenges when incorporating SrTiO3-based materials into metal-supported cells based on ferritic stainless steel.
引用
收藏
页码:494 / 505
页数:12
相关论文
共 41 条
[1]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[2]   Metal-supported SOFC with Ceramic-based Anode [J].
Blennow, P. ;
Klemenso, T. ;
Persson, A. H. ;
Brodersen, K. ;
Srivastava, A. K. ;
Sudireddy, B. R. ;
Ramousse, S. ;
Mogensen, M. .
SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01) :683-692
[3]   Planar Metal-Supported SOFC with Novel Cermet Anode [J].
Blennow, P. ;
Hjelm, J. ;
Klemenso, T. ;
Persson, A. H. ;
Ramousse, S. ;
Mogensen, M. .
FUEL CELLS, 2011, 11 (05) :661-668
[4]  
Blennow P., 2008, ECS Transactions, V13, P181
[5]   Manufacturing and characterization of metal-supported solid oxide fuel cells [J].
Blennow, Peter ;
Hjelm, Johan ;
Klemenso, Trine ;
Ramousse, Severine ;
Kromp, Alexander ;
Leonide, Andre ;
Weber, Andre .
JOURNAL OF POWER SOURCES, 2011, 196 (17) :7117-7125
[6]   Electrochemical characterization and redox behavior of Nb-doped SrTiO3 [J].
Blennow, Peter ;
Hansen, Kent K. ;
Wallenberg, L. Reine ;
Mogensen, Mogens .
SOLID STATE IONICS, 2009, 180 (01) :63-+
[7]   Defect and electrical transport properties of Nb-doped SrTiO3 [J].
Blennow, Peter ;
Hagen, Anke ;
Hansen, Kent K. ;
Wallenberg, L. Reine ;
Mogensen, Mogens .
SOLID STATE IONICS, 2008, 179 (35-36) :2047-2058
[8]   The amazing Perovskite anode [J].
Boukamp, BA .
NATURE MATERIALS, 2003, 2 (05) :294-296
[9]   Development of metal supported solid oxide fuel cells for operation at 500-600°C [J].
Brandon, N. P. ;
Blake, A. ;
Corcoran, D. ;
Cumming, D. ;
Duckett, A. ;
El-Koury, K. ;
Haigh, D. ;
Kidd, C. ;
Leah, R. ;
Lewis, G. ;
Matthews, C. ;
Maynard, N. ;
Oishi, N. ;
McColm, T. ;
Trezona, R. ;
Selcuk, A. ;
Schmidt, M. ;
Verdugo, L. .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2004, 1 (01) :61-65
[10]   Effects of testing configurations and cell geometries on the performance of a SOFC: A modeling approach [J].
Cui, Daan ;
Yang, Chenghao ;
Huang, Kevin ;
Chen, Fanglin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (19) :10495-10504