Electrochemical Fabrication of MoO2/MoO3-based Photo-Anodes for Water Splitting

被引:2
作者
Garcia-Garcia, M. [1 ]
Colet-Lagrille, M. [1 ]
机构
[1] Univ Chile, Dept Chem Engn & Biotechnol, Beauchef 851, Santiago, Chile
来源
OXYGEN OR HYDROGEN EVOLUTION CATALYSIS FOR WATER ELECTROLYSIS 3 | 2017年 / 77卷 / 09期
关键词
D O I
10.1149/07709.0077ecst
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photo-electrochemical cells are a promising technology for the environmentally-benign production of hydrogen using solar energy. In this kind of cells, a photo-active material is coated or deposited on a substrate (e. g. fluorine-doped tin dioxide(FTO)-coated glass) which acts as current collector and support. In this research project, a molybdenum oxide layer is electrochemically deposited on the surface of a FTO-coated glass working electrode immersed in a solution containing 0.075 M molybdate (MoO42-), 0.075 M nickel sulfate (NiSO4 center dot 6H(2)O), 0.5 M tri-sodium citrate (Na3C6H5O7 center dot 2H(2)O) and 0.7 M ammonium hydroxide (NH4OH), by applying a potential of -1.377 V vs Ag/AgCl (3 M KCl) during 3 hours. The characterization of the photo-anodes produced suggests that they present semiconducting and catalytic properties which make them attractive for their application in a photo-electrochemical cell for water splitting.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 50 条
[31]   MoO3-based sputtered thin films for fast NO2 detection [J].
Ferroni, M ;
Guidi, V ;
Martinelli, G ;
Sacerdoti, M ;
Nelli, P ;
Sberveglieri, G .
SENSORS AND ACTUATORS B-CHEMICAL, 1998, 48 (1-3) :285-288
[32]   Anodic oxide films on stainless steel as prospective photo-anodes for light-assisted electrochemical water splitting [J].
Betova, Iva ;
Bojinov, Martin ;
Karastoyanov, Vasil .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2022, 429
[33]   Rate control mechanism for the hydrogen reduction of MoO3 to MoO2 [J].
Enneti, Ravi K. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2012, 33 :122-123
[34]   Kinetics of oxidation of MoO2 to MoO3 by oxygen at elevated temperatures [J].
Kahruman, C ;
Yusufoglu, I ;
Oktay, E .
TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION C-MINERAL PROCESSING AND EXTRACTIVE METALLURGY, 1999, 108 :C8-C14
[35]   Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2 [J].
Scanlon, David O. ;
Watson, Graeme W. ;
Payne, D. J. ;
Atkinson, G. R. ;
Egdell, R. G. ;
Law, D. S. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (10) :4636-4645
[36]   MoO3-based catalysts supported on SiO2 and their performance in hydrodeoxygenation [J].
Valencia, Diego ;
Diaz, Leonardo ;
Felipe Ramirez-Verduzco, Luis ;
Amezcua-Allieri, Myriam A. ;
Aburto, Jorge .
MATERIALS LETTERS, 2019, 251 :226-229
[37]   MoO3-based sensor for NO, NO2 and CH4 detection [J].
Barazzouk, S. ;
Tandon, R. P. ;
Hotchandani, S. .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 119 (02) :691-694
[38]   EFFECT OF PHOSPHORUS ON THE OXIDATION SELECTIVITY OF MOO3-BASED CATALYSTS [J].
AI, M .
POLYHEDRON, 1986, 5 (1-2) :103-105
[39]   Mapping Valence Band and Interface Electronic Structure Changes during the Oxidation of Mo to MoO3 via MoO2 and MoO3 Reduction to MoO2: A NAPPES Study [J].
Reddy, Kasala Prabhakar ;
Mhamane, Nitin B. ;
Ghosalya, Manoj Kumar ;
Gopinath, Chinnakonda S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (40) :23034-23044
[40]   Synthesis and electrochemical characterization of MoO3-based composites with graphite, WO3, and δ-MnO2 for supercapacitor applications [J].
Anju, J. P. ;
Ardra, A. N. ;
Thomas, An Maria ;
Philip, Abin ;
Kumar, A. Ruban .
TRANSITION METAL CHEMISTRY, 2025,