Homotopical Adjoint Lifting Theorem

被引:7
作者
White, David [1 ]
Yau, Donald [2 ]
机构
[1] Denison Univ, Granville, OH 43023 USA
[2] Ohio State Univ Newark, Newark, OH USA
关键词
Algebraic-topology; Category-theory; Model-categories; Quillen-equivalences; Operads; Rectification; OPERADS; ALGEBRAS; MODULES; RESOLUTION; RINGS;
D O I
10.1007/s10485-019-09560-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides a homotopical version of the adjoint lifting theorem in category theory, allowing for Quillen equivalences to be lifted from monoidal model categories to categories of algebras over colored operads. The generality of our approach allows us to simultaneously answer questions of rectification and of changing the base model category to a Quillen equivalent one. We work in the setting of colored operads, and we do not require them to be sigma-cofibrant. Special cases of our main theorem recover many known results regarding rectification and change of model category, as well as numerous new results. In particular, we recover a recent result of Richter-Shipley about a zig-zag of Quillen equivalences between commutative HQ-algebra spectra and commutative differential graded Q-algebras, but our version involves only three Quillen equivalences instead of six. We also work out the theory of how to lift Quillen equivalences to categories of colored operad algebras after a left Bousfield localization.
引用
收藏
页码:385 / 426
页数:42
相关论文
共 44 条
[1]  
[Anonymous], ARXIV14105699
[2]  
Batanin M., ARXIV160601537
[3]   Axiomatic homotopy theory for operads [J].
Berger, C ;
Moerdijk, I .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :805-831
[4]  
Berger C, 2007, CONTEMP MATH, V431, P31
[5]   The Boardman-Vogt resolution of operads in monoidal model categories [J].
Berger, Clemens ;
Moerdijk, Ieke .
TOPOLOGY, 2006, 45 (05) :807-849
[6]  
Borceux F., 1994, HDB CATEGORICAL ALGE
[7]   Cosimplicial versus DG-rings:: a version of the Dold-Kan correspondence [J].
Castiglioni, JL ;
Cortiñas, G .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 191 (1-2) :119-142
[8]   Rings, modules, and algebras in infinite loop space theory [J].
Elmendorf, A. D. ;
Mandell, M. A. .
ADVANCES IN MATHEMATICS, 2006, 205 (01) :163-228
[9]  
Fregier Y., 2009, NEW YORK J MATH, V15, P353
[10]  
Fresse B., 1967, LECT NOTES MATH