Nonparametric Estimation of the Conditional Distribution at Regression Boundary Points

被引:6
|
作者
Das, Srinjoy [1 ]
Politis, Dimitris N. [2 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
AMERICAN STATISTICIAN | 2020年 / 74卷 / 03期
关键词
Kernel smoothing; Local linear regression; Local polynomial fitting; Model-free prediction; Point prediction;
D O I
10.1080/00031305.2018.1558109
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression is a standard statistical tool with increased importance in the Big Data era. Boundary points pose additional difficulties but local polynomial regression can be used to alleviate them. Local linear regression, for example, is easy to implement and performs quite well both at interior and boundary points. Estimating the conditional distribution function and/or the quantile function at a given regressor point is immediate via standard kernel methods but problems ensue if local linear methods are to be used. In particular, the distribution function estimator is not guaranteed to be monotone increasing, and the quantile curves can "cross." In the article at hand, a simple method of correcting the local linear distribution estimator for monotonicity is proposed, and its good performance is demonstrated via simulations and real data examples. for this article are available online.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
  • [1] On conditional variance estimation in nonparametric regression
    Siddhartha Chib
    Edward Greenberg
    Statistics and Computing, 2013, 23 : 261 - 270
  • [2] On conditional variance estimation in nonparametric regression
    Chib, Siddhartha
    Greenberg, Edward
    STATISTICS AND COMPUTING, 2013, 23 (02) : 261 - 270
  • [3] Nonparametric Estimation of the Conditional Distribution Function For Surrogate Data by the Regression Model
    Metmous, Imane
    Attouch, Mohammed Kadi
    Mechab, Boubaker
    Merouan, Torkia
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 55 - 74
  • [4] Estimation of Conditional Distribution Function Under Nonparametric Regression with Fixed Design
    Abdushukurov A.A.
    Abdikalikov F.A.
    Journal of Mathematical Sciences, 2022, 267 (1) : 132 - 138
  • [5] On the estimation of a monotone conditional variance in nonparametric regression
    Dette, Holger
    Pilz, Kay
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) : 111 - 141
  • [6] On the estimation of a monotone conditional variance in nonparametric regression
    Holger Dette
    Kay Pilz
    Annals of the Institute of Statistical Mathematics, 2009, 61 : 111 - 141
  • [7] Order-preserving nonparametric regression, with applications to conditional distribution and quantile function estimation
    Hall, P
    Müller, HG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (463) : 598 - 608
  • [8] Nonparametric regression estimation of conditional tails: the random covariate case
    Goegebeur, Yuri
    Guillou, Armelle
    Schorgen, Antoine
    STATISTICS, 2014, 48 (04) : 732 - 755
  • [9] Nonparametric estimation of conditional quantiles using quantile regression trees
    Chaudhuri, P
    Loh, WY
    BERNOULLI, 2002, 8 (05) : 561 - 576
  • [10] Local linear regression estimator on the boundary correction in nonparametric regression estimation
    Cheruiyot L.R.
    Journal of Statistical Theory and Applications, 2020, 19 (3): : 460 - 471