ON A REACTION-DIFFUSION SYSTEM ASSOCIATED WITH BRAIN LACTATE KINETICS

被引:0
|
作者
Guillevin, Remy [1 ,2 ]
Miranville, Alain [1 ]
Perrillat-Mercerot, Angelique [1 ]
机构
[1] Univ Poitiers, UMR CNRS 7348, Lab Math & Applicat, Equipe DACTIM MIS,SP2MI, Blvd Marie & Pierre Curie,Teleport 2, F-86962 Futuroscope, France
[2] CHU Poitiers, 2 Rue Mil, F-86021 Poitiers, France
关键词
Brain lactate kinetics; spatial diffusion; reaction-diffusion system; well-posedness; regularity; linear stability; GENERAL BOUNDARY CONDITIONS; MATHEMATICAL-MODEL; METABOLISM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this article is to study properties of a reaction-diffusion system which is related with brain lactate kinetics, when spatial diffusion is taken into account. In particular, we prove the existence and uniqueness of nonnegative solutions and obtain linear stability results. We also derive L-infinity- bounds on the solutions. These results give insights on the therapeutic man-agement of glioma
引用
收藏
页数:16
相关论文
共 50 条
  • [31] On the dynamics of a discrete reaction-diffusion system
    Azmy, Y.Y.
    Protopopescu, V.
    Numerical Methods for Partial Differential Equations, 1991, 7 (04) : 385 - 405
  • [32] A STEFAN PROBLEM FOR A REACTION-DIFFUSION SYSTEM
    FRIEDMAN, A
    ROSS, DS
    ZHANG, JH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1089 - 1112
  • [33] Spiral instabilities in a reaction-diffusion system
    Zhou, LQ
    Ouyang, Q
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (01): : 112 - 118
  • [34] DYNAMICS OF A COUPLED REACTION-DIFFUSION SYSTEM
    ETLICHER, B
    WILHELMSSON, H
    PHYSICA SCRIPTA, 1990, 42 (01): : 81 - 84
  • [35] Breathing spots in a reaction-diffusion system
    Haim, D
    Li, G
    Ouyang, Q
    McCormick, WD
    Swinney, HL
    Hagberg, A
    Meron, E
    PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 190 - 193
  • [36] REACTION-DIFFUSION IN THE AU-IN SYSTEM
    MILLARES, M
    PIERAGGI, B
    LELIEVRE, E
    SOLID STATE IONICS, 1993, 63-5 : 575 - 580
  • [37] Approximate controllability of a reaction-diffusion system
    Crepeau, Emmanuelle
    Prieur, Christophe
    SYSTEMS & CONTROL LETTERS, 2008, 57 (12) : 1048 - 1057
  • [38] Packet waves in a reaction-diffusion system
    Vanag, VK
    Epstein, IR
    PHYSICAL REVIEW LETTERS, 2002, 88 (08) : 4
  • [39] Pulse dynamics in a reaction-diffusion system
    Ohta, T
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 151 (01) : 61 - 72
  • [40] Qualitative analysis of a reaction-diffusion system
    Wang, MX
    Chen, YL
    APPLIED MATHEMATICS LETTERS, 2005, 18 (02) : 199 - 203