On the Second Descent Points for the K-Error Linear Complexity of 2n-Periodic Binary Sequences

被引:0
作者
Zhou, Jianqin [1 ,2 ]
Wang, Xifeng [1 ]
Liu, Wanquan [2 ]
机构
[1] Anhui Univ Technol, Sch Comp Sci, Maanshan 243032, Peoples R China
[2] Curtin Univ, Dept Comp, Perth, WA 6102, Australia
来源
PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, INFORMATION MANAGEMENT AND NETWORK SECURITY | 2016年 / 47卷
关键词
periodic sequence; linear complexity; k-error linear complexity; k-error linear complexity distribution; FAST ALGORITHM; GF Q; SPECTRUM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a constructive approach for determining CELCS (critical error linear complexity spectrum) for the k-error linear complexity distribution of 2(n)-periodic binary sequences is developed via the sieve method and Games-Chan algorithm. Accordingly, the second descent point (critical point) distribution of the k-error linear complexity for 2(n)-periodic binary sequences is characterized. As a by product, it is proved that the maximum k-error linear complexity is 2(n)-(2(l)-1) over all 2n- periodic binary sequences, where 2(l-1)<=k < 2(l) and l < n. With these results, some work by Niu et al. are proved to be incorrect.
引用
收藏
页码:311 / 314
页数:4
相关论文
共 26 条
[1]  
Chang ZL, 2013, CHINESE J ELECTRON, V22, P1
[2]  
Clerk Maxwell J., 1892, SIGNALS SYSTEMS, P68
[3]  
DING C, 1991, LECT NOTES COMPUT SC, V561, pR3
[4]   Properties of the Error Linear Complexity Spectrum [J].
Etzion, Tuvi ;
Kalouptsidis, Nicholas ;
Kolokotronis, Nicholas ;
Limniotis, Konstantinos ;
Paterson, Kenneth G. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (10) :4681-4686
[5]  
Fu FW, 2006, LECT NOTES COMPUT SC, V4086, P88
[6]   A FAST ALGORITHM FOR DETERMINING THE COMPLEXITY OF A BINARY SEQUENCE WITH PERIOD 2N [J].
GAMES, RA ;
CHAN, AH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (01) :144-146
[7]   On the k-error linear complexity of pm-periodic binary sequences [J].
Han, Yun Kyoung ;
Chung, Jin-Ho ;
Yang, Kyeongcheol .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (06) :2297-2304
[8]   An algorithm for the k-error linear complexity of sequences over GF( pm) with period pn, p a prime [J].
Kaida, T ;
Uehara, S ;
Imamura, K .
INFORMATION AND COMPUTATION, 1999, 151 (1-2) :134-147
[9]   Characterization of 2 n -periodic binary sequences with fixed 2-error or 3-error linear complexity [J].
Kavuluru, Ramakanth .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 53 (02) :75-97
[10]   Minimum linear span approximation of binary sequences [J].
Kolokotronis, N ;
Rizomiliotis, P ;
Kalouptsidis, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (10) :2758-2764