On Computational and Combinatorial Properties of the Total Co-independent Domination Number of Graphs

被引:18
作者
Cabrera Martinez, Abel [1 ]
Hernandez Mira, Frank A. [1 ]
Sigarreta Almira, Jose M. [1 ]
Yero, Ismael G. [2 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco 39350, Guerrero, Mexico
[2] Univ Cadiz, Escuela Politecn Super Algeciras, Dept Matemat, Ave Ramon Puyol S-N, Algeciras 11202, Spain
关键词
total co-independent domination; total domination; vertex independence; vertex cover;
D O I
10.1093/comjnl/bxy038
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A subset D of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex of D. The total dominating set D is called a total co-independent dominating set if the subgraph induced by V-D is edgeless and has at least one vertex. The minimum cardinality of any total co-independent dominating set is the total co-independent domination number of G and is denoted by gamma(t,coi) (G). In this work we study some complexity and combinatorial properties of gamma(t,coi) (G). Specifically, we prove that deciding whether gamma(t,coi) (G) <= k for a given integer k is an NP-complete problem and give several bounds on gamma(t,coi) (G). Moreover, since any total co-independent dominating set is a total dominating set, we characterize all the trees having equal total co-independent domination number and total domination number.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 24 条
[1]   THE TOTAL CO-INDEPENDENT DOMINATION NUMBER OF SOME GRAPH OPERATIONS [J].
Martinez, Abel Cabrera ;
Garcia, Suitberto cabrera ;
Peterin, Iztik ;
Yero, Ismael G. .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (01) :153-168
[2]   On the Total Outer k-Independent Domination Number of Graphs [J].
Cabrera-Martinez, Abel ;
Carlos Hernandez-Gomez, Juan ;
Parra-Inza, Ernesto ;
Sigarreta Almira, Jose Maria .
MATHEMATICS, 2020, 8 (02)
[3]   Outer-independent total Roman domination in graphs [J].
Cabrera Martinez, Abel ;
Kuziak, Dorota ;
Yero, Ismael G. .
DISCRETE APPLIED MATHEMATICS, 2019, 269 :107-119
[4]   Relating the total {2}-domination number with the total domination number of graphs [J].
Villamar, I. Rios ;
Cabrera-Martinez, A. ;
Sanchez, J. L. ;
Sigarreta, J. M. .
DISCRETE APPLIED MATHEMATICS, 2023, 333 :90-95
[5]   Graphs with large total domination number [J].
Henning, MA .
JOURNAL OF GRAPH THEORY, 2000, 35 (01) :21-45
[6]   On graphs for which the connected domination number is at most the total domination number [J].
Schaudt, Oliver .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) :1281-1284
[7]   ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS [J].
Bresar, Bostjan ;
Bujtas, Csilla ;
Gologranc, Tanja ;
Klavzar, Sandi ;
Kosmrlj, Gasper ;
Marc, Tilen ;
Patkos, Balazs ;
Tuza, Zsolt ;
Vizer, Mate .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) :225-247
[8]   On the Total Domination Number of Cartesian Products of Graphs [J].
Michael A. Henning ;
Douglas F. Rall .
Graphs and Combinatorics, 2005, 21 :63-69
[9]   On the total domination number of Cartesian products of graphs [J].
Henning, MA ;
Rall, DF .
GRAPHS AND COMBINATORICS, 2005, 21 (01) :63-69
[10]   Double outer-independent domination number of graphs [J].
Martinez, Abel Cabrera .
QUAESTIONES MATHEMATICAE, 2021, 44 (12) :1835-1850