On Computational and Combinatorial Properties of the Total Co-independent Domination Number of Graphs

被引:16
|
作者
Cabrera Martinez, Abel [1 ]
Hernandez Mira, Frank A. [1 ]
Sigarreta Almira, Jose M. [1 ]
Yero, Ismael G. [2 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco 39350, Guerrero, Mexico
[2] Univ Cadiz, Escuela Politecn Super Algeciras, Dept Matemat, Ave Ramon Puyol S-N, Algeciras 11202, Spain
关键词
total co-independent domination; total domination; vertex independence; vertex cover;
D O I
10.1093/comjnl/bxy038
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A subset D of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex of D. The total dominating set D is called a total co-independent dominating set if the subgraph induced by V-D is edgeless and has at least one vertex. The minimum cardinality of any total co-independent dominating set is the total co-independent domination number of G and is denoted by gamma(t,coi) (G). In this work we study some complexity and combinatorial properties of gamma(t,coi) (G). Specifically, we prove that deciding whether gamma(t,coi) (G) <= k for a given integer k is an NP-complete problem and give several bounds on gamma(t,coi) (G). Moreover, since any total co-independent dominating set is a total dominating set, we characterize all the trees having equal total co-independent domination number and total domination number.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 24 条
  • [1] THE TOTAL CO-INDEPENDENT DOMINATION NUMBER OF SOME GRAPH OPERATIONS
    Martinez, Abel Cabrera
    Garcia, Suitberto cabrera
    Peterin, Iztik
    Yero, Ismael G.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (01): : 153 - 168
  • [2] On the Total Outer k-Independent Domination Number of Graphs
    Cabrera-Martinez, Abel
    Carlos Hernandez-Gomez, Juan
    Parra-Inza, Ernesto
    Sigarreta Almira, Jose Maria
    MATHEMATICS, 2020, 8 (02)
  • [3] Outer-independent total Roman domination in graphs
    Cabrera Martinez, Abel
    Kuziak, Dorota
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2019, 269 : 107 - 119
  • [4] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [5] Graphs with large total domination number
    Henning, MA
    JOURNAL OF GRAPH THEORY, 2000, 35 (01) : 21 - 45
  • [6] On graphs for which the connected domination number is at most the total domination number
    Schaudt, Oliver
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1281 - 1284
  • [7] ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS
    Bresar, Bostjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Marc, Tilen
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 225 - 247
  • [8] On the Total Domination Number of Cartesian Products of Graphs
    Michael A. Henning
    Douglas F. Rall
    Graphs and Combinatorics, 2005, 21 : 63 - 69
  • [9] On the total domination number of Cartesian products of graphs
    Henning, MA
    Rall, DF
    GRAPHS AND COMBINATORICS, 2005, 21 (01) : 63 - 69
  • [10] Double outer-independent domination number of graphs
    Martinez, Abel Cabrera
    QUAESTIONES MATHEMATICAE, 2021, 44 (12) : 1835 - 1850