Two dimensional zero-attracting variable step-size LMS algorithm for sparse system identification

被引:0
|
作者
Jahromi, Mohammad N. S. [1 ]
Hocanin, Aykut [1 ]
Kukrer, Osman [1 ]
Salman, Mohammad Shukri [2 ]
机构
[1] Eastern Mediterranean Univ, TRNC, Elect & Elect Engn Dept, TR-10 Mersin, Turkey
[2] Mevlana Rumi Univ, Elect Elect Engn Dept, Konya, Turkey
关键词
ZA-VSSLMS Adaptive Filtering; Compressed Sensing; Image Deconvolution;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce a two dimensional version of the zero-attracting variable step size LMS (ZA-VSSLMS) adaptive filter for image deconvolution. ZA-VSSLMS was proposed to improve the performance of the VSSLMS algorithm when the system is sparse. We design a new 2-D adaptive filter that not only updates its coefficients in both horizontal and vertical directions but more importantly improves the performance of the filter when the the point spread function (PSF) in an image deconvolution problem has a sparse structure. This is achieved by adding an l(1) norm penalty function into the original cost function of the VSSLMS algorithm. The simulation results show improved PSNR compared to 2-D VSSLMS algorithm.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] A zero-attracting variable step-size LMS algorithm for sparse system identification
    Salman, Mohammad Shukri
    Jahromi, Mohammad N. S.
    Hocanin, Aykut
    Kukrer, Osman
    2012 IX INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (BIHTEL), 2012,
  • [2] Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification
    Jahromi, Mohammad N. S.
    Salman, Mohammad Shukri
    Hocanin, Aykut
    Kukrer, Osman
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (06) : 1353 - 1356
  • [3] Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification
    Mohammad N. S. Jahromi
    Mohammad Shukri Salman
    Aykut Hocanin
    Osman Kukrer
    Signal, Image and Video Processing, 2015, 9 : 1353 - 1356
  • [4] Variable step-size weighted zero-attracting sign algorithm
    Chen, Xu
    Ni, Jingen
    SIGNAL PROCESSING, 2020, 172
  • [5] An Optimized Zero-Attracting LMS Algorithm for the Identification of Sparse System
    Luo, Lei
    Zhu, Wen-Zhao
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 3060 - 3073
  • [6] Mean-square deviation analysis of the zero-attracting variable step-size LMS algorithm
    Mohammad N. S. Jahromi
    Mohammad Shukri Salman
    Aykut Hocanin
    Osman Kukrer
    Signal, Image and Video Processing, 2017, 11 : 533 - 540
  • [7] Adaptive algorithm for sparse system identification: Zero-attracting LMS
    Jin, Jian
    Gu, Yuantao
    Mei, Shunliang
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2010, 50 (10): : 1656 - 1659
  • [8] Mean-square deviation analysis of the zero-attracting variable step-size LMS algorithm
    Jahromi, Mohammad N. S.
    Salman, Mohammad Shukri
    Hocanin, Aykut
    Kukrer, Osman
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (03) : 533 - 540
  • [9] Robust Variable Step-Size Reweighted Zero-Attracting Least Mean M-Estimate Algorithm for Sparse System Identification
    Wang, Gen
    Zhao, Haiquan
    Song, Pucha
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (06) : 1149 - 1153
  • [10] A Reweighted Zero-Attracting/Repelling LMS Algorithm for Sparse System Identification
    Wei, Ye
    Wang, Zhiyong
    Zhang, Yonggang
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 1128 - 1132