A generic incompressible flow is topological mixing

被引:29
作者
Bessa, Mario [1 ,2 ,3 ]
机构
[1] ESTGOH IPC, P-3400124 Oporto, Portugal
[2] Oliveira Hosp, P-4169007 Oporto, Portugal
[3] CMUP, P-4169007 Oporto, Portugal
关键词
D O I
10.1016/j.crma.2008.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we prove that there exists a residual subset of the set of divergence-free vector fields defined on a compact, connected Riemannian manifold M, such that any vector field in this residual satisfies the following property: Given any two nonempty open subsets U and V of M, there exists tau is an element of R such that X-t (U) boolean AND V not equal 0 for any t >= tau. To cite this article: M. Bessa, C. R. Acad. Sci. Paris, Ser. I 346 (2008). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1169 / 1174
页数:6
相关论文
共 11 条
[1]   Robust transitivity and topological mixing for C1-flows [J].
Abdenur, F ;
Avila, A ;
Bochi, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :699-705
[2]   A pasting lemma and some applications for conservative systems [J].
Arbieto, Alexander ;
Matheus, Carlos .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1399-1417
[3]  
BESSA M, 2008, J DIFFERENT IN PRESS
[4]   The Lyapunov exponents of generic zero divergence three-dimensional vector fields [J].
Bessa, Mario .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1445-1472
[5]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[6]   ON VOLUME ELEMENTS ON A MANIFOLD [J].
MOSER, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (02) :286-&
[7]  
Palis J., 2012, Geometric theory of dynamical systems. An introduction
[8]  
Pugh C., 1983, ERGOD THEOR DYN SYST, V3, P261, DOI [DOI 10.1017/S0143385700001978, 10.1017/S0143385700001978]
[9]   GENERIC PROPERTIES OF CONSERVATIVE SYSTEMS [J].
ROBINSON, RC .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (03) :562-&
[10]   C1 connecting lemma [J].
Wen, L ;
Xia, ZH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) :5213-5230