Semi-supervised deep learning based 3D analysis of the peripapillary region

被引:15
作者
Heisler, Morgan [1 ]
Bhalla, Mahadev [2 ]
Lo, Julian [1 ]
Mammo, Zaid [3 ]
Lee, Sieun [1 ]
Ju, Myeong Jin [3 ,4 ]
Beg, Mirza Faisal [1 ]
Sarunic, Marinko, V [1 ]
机构
[1] Simon Fraser Univ, Dept Engn Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[2] Univ British Columbia, Fac Med, 317-2194 Hlth Sci Mall, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, Dept Ophthalmol & Vis Sci, 2550 Willow St, Vancouver, BC V5Z 3N9, Canada
[4] Univ British Columbia, Sch Biomed Engn, 251-2222 Hlth Sci Mall, Vancouver, BC V6T 1Z3, Canada
来源
BIOMEDICAL OPTICS EXPRESS | 2020年 / 11卷 / 07期
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
COHERENCE TOMOGRAPHY IMAGES; OPTIC-NERVE HEAD; LAYER SEGMENTATION; RETINAL LAYER; AUTOMATIC SEGMENTATION; DISC MARGIN; OCT IMAGES; GLAUCOMA; BOUNDARIES; THICKNESS;
D O I
10.1364/BOE.392648
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical coherence tomography (OCT) has become an essential tool in the evaluation of glaucoma, typically through analyzing retinal nerve fiber layer changes in circumpapillary scans. Three-dimensional OCT volumes enable a much more thorough analysis of the optic nerve head (ONH) region, which may be the site of initial glaucomatous optic nerve damage. Automated analysis of this region is of great interest, though large anatomical variations and the termination of layers make the requisite peripapillary layer and Bruch's membrane opening (BMO) segmentation a challenging task. Several machine learning-based segmentation methods have been proposed for retinal layer segmentation, and a few tbr the ONH region, but they typically depend on either heavily averaged or pre-processed B-scans or a large amount of annotated data, which is a tedious task and resource-intensive. We evaluated a semi-supervised adversarial deep learning method for segmenting peripapillary retinal layers in OCT B-scans to take advantage of unlabeled data. We show that the use of a generative adversarial network and unlabeled data can improve the performance of segmentation. Additionally, we use a Faster R-CNN architecture to automatically segment the BMO. The proposed methods are then used for the 3D morphometric analysis of both control and glaucomatous ONH volumes to demonstrate the potential for clinical utility. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:3843 / 3856
页数:14
相关论文
共 34 条
  • [1] Apostolopoulos Stefanos, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P294, DOI 10.1007/978-3-319-66179-7_34
  • [2] Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
    Bhalla, Mahadev
    Heisler, Morgan
    Han, Sherry X.
    Sarunic, Marinko V.
    Beg, Mirza F.
    Mackenzie, Paul J.
    Lee, Sieun
    [J]. JOURNAL OF GLAUCOMA, 2019, 28 (10) : 889 - 895
  • [3] Burgoyne Claude, 2015, J Neuroophthalmol, V35 Suppl 1, pS8, DOI 10.1097/WNO.0000000000000289
  • [4] From Clinical Examination of the Optic Disc to Clinical Assessment of the Optic Nerve Head: A Paradigm Change
    Chauhan, Balwantray C.
    Burgoyne, Claude F.
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2013, 156 (02) : 218 - 227
  • [5] Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation
    Chiu, Stephanie J.
    Li, Xiao T.
    Nicholas, Peter
    Toth, Cynthia A.
    Izatt, Joseph A.
    Farsiu, Sina
    [J]. OPTICS EXPRESS, 2010, 18 (18): : 19413 - 19428
  • [6] Devalla S. K., 2017, LABEL FREE 3D SEGMEN
  • [7] DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
    Devalla, Sripad Krishna
    Renukanand, Prajwal K.
    Sreedhar, Bharathwaj K.
    Subramanian, Giridhar
    Zhang, Liang
    Perera, Shamira
    Mari, Jean-Martial
    Chin, Khai Sing
    Tun, Tin A.
    Strouthidis, Nicholas G.
    Aung, Tin
    Thiery, Alexandre H.
    Girard, Michael J. A.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07): : 3244 - 3265
  • [8] A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head
    Devalla, Sripad Krishna
    Chin, Khai Sing
    Mari, Jean-Martial
    Tun, Tin A.
    Strouthidis, Nicholas G.
    Aung, Tin
    Thiery, Alexandre H.
    Girard, Michael J. A.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (01) : 63 - 74
  • [9] Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
    Fang, Leyuan
    Cunefare, David
    Wang, Chong
    Guymer, Robyn H.
    Li, Shutao
    Farsiu, Sina
    [J]. BIOMEDICAL OPTICS EXPRESS, 2017, 8 (05): : 2732 - 2744
  • [10] Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search
    Garvin, Mona K.
    Abramoff, Michael D.
    Kardon, Randy
    Russell, Stephen R.
    Wu, Xiaodong
    Sonka, Milan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (10) : 1495 - 1505