SHARP LOWER BOUNDS FOR THE DIMENSION OF LINEARIZATIONS OF MATRIX POLYNOMIALS

被引:15
作者
De Teran, Fernando [1 ]
Dopico, Froilan M. [2 ,3 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Carlos III Madrid, CSIC, UAM UCM UC3M, Inst Ciencias Matemat, Leganes 28911, Spain
[3] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
关键词
Matrix polynomials; Matrix pencils; Linearizations; Dimension;
D O I
10.13001/1081-3810.1281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A standard way of dealing with matrix polynomial eigenvalue problems is to use linearizations. Byers, Mehrmann and Xu have recently defined and studied linearizations of dimensions smaller than the classical ones. In this paper, lower bounds are provided for the dimensions of linearizations and strong linearizations of a given m x n matrix polynomial, and particular linearizations are constructed for which these bounds are attained. It is also proven that strong linearizations of an n x n regular matrix polynomial of degree l must have dimension nl x nl.
引用
收藏
页码:518 / 531
页数:14
相关论文
共 50 条
  • [21] Updating Matrix Polynomials
    Ding, Wei
    Qiu, Ke
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 72 - 82
  • [22] On solvents of matrix polynomials
    Pereira, E
    APPLIED NUMERICAL MATHEMATICS, 2003, 47 (02) : 197 - 208
  • [23] Multi-vortices and Lower Bounds for the Attractor Dimension of 2D Navier-Stokes Equations
    Kostianko, A. G.
    Ilyin, A. A.
    Stone, D.
    Zelik, S. V.
    DOKLADY MATHEMATICS, 2024, 109 (02) : 179 - 182
  • [24] LOCATING THE EIGENVALUES OF MATRIX POLYNOMIALS
    Bini, Dario A.
    Noferini, Vanni
    Sharify, Meisam
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1708 - 1727
  • [25] A Note on Nondegenerate Matrix Polynomials
    Trung Hoa Dinh
    Toan Minh Ho
    Tien Son Pham
    ACTA MATHEMATICA VIETNAMICA, 2018, 43 (04) : 761 - 778
  • [26] PALINDROMIC LINEARIZATIONS OF A MATRIX POLYNOMIAL OF ODD DEGREE OBTAINED FROM FIEDLER PENCILS WITH REPETITION
    Bueno, M. I.
    Furtado, S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 562 - 577
  • [27] On Householder sets for matrix polynomials
    Cameron, Thomas R.
    Psarrakos, Panayiotis J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 585 : 105 - 126
  • [28] Matrix exceptional Laguerre polynomials
    Koelink, E.
    Morey, L.
    Roman, P.
    STUDIES IN APPLIED MATHEMATICS, 2024, 152 (02) : 778 - 809
  • [29] On pseudospectra of matrix polynomials and their boundaries
    Boulton, Lyonell
    Lancaster, Peter
    Psarrakos, Panayiotis
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 313 - 334
  • [30] FACTORIZATION OF MATRIX POLYNOMIALS WITH SYMMETRIES
    RAN, ACM
    RODMAN, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (03) : 845 - 864