SHARP LOWER BOUNDS FOR THE DIMENSION OF LINEARIZATIONS OF MATRIX POLYNOMIALS

被引:15
|
作者
De Teran, Fernando [1 ]
Dopico, Froilan M. [2 ,3 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Carlos III Madrid, CSIC, UAM UCM UC3M, Inst Ciencias Matemat, Leganes 28911, Spain
[3] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
关键词
Matrix polynomials; Matrix pencils; Linearizations; Dimension;
D O I
10.13001/1081-3810.1281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A standard way of dealing with matrix polynomial eigenvalue problems is to use linearizations. Byers, Mehrmann and Xu have recently defined and studied linearizations of dimensions smaller than the classical ones. In this paper, lower bounds are provided for the dimensions of linearizations and strong linearizations of a given m x n matrix polynomial, and particular linearizations are constructed for which these bounds are attained. It is also proven that strong linearizations of an n x n regular matrix polynomial of degree l must have dimension nl x nl.
引用
收藏
页码:518 / 531
页数:14
相关论文
共 50 条
  • [1] Algebraic linearizations of matrix polynomials
    Chan, Eunice Y. S.
    Corless, Robert M.
    Gonzalez-Vega, Laureano
    Rafael Sendra, J.
    Sendra, Juana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 373 - 399
  • [2] Fiedler companion linearizations for rectangular matrix polynomials
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) : 957 - 991
  • [3] LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 371 - 402
  • [4] A FRAMEWORK FOR STRUCTURED LINEARIZATIONS OF MATRIX POLYNOMIALS IN VARIOUS BASES
    Robol, Leonardo
    Vandebril, Raf
    Van Dooren, Paul
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (01) : 188 - 216
  • [5] RECOVERY OF EIGENVECTORS AND MINIMAL BASES OF MATRIX POLYNOMIALS FROM GENERALIZED FIEDLER LINEARIZATIONS
    Bueno, Maria I.
    de Teran, Fernando
    Dopico, Froilan M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (02) : 463 - 483
  • [6] VECTOR SPACES OF LINEARIZATIONS FOR MATRIX POLYNOMIALS: A BIVARIATE POLYNOMIAL APPROACH
    Nakatsukasa, Yuji
    Noferini, Vanni
    Townsend, Alex
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (01) : 1 - 29
  • [7] CONSTRUCTING STRONG LINEARIZATIONS OF MATRIX POLYNOMIALS EXPRESSED IN CHEBYSHEV BASES
    Lawrence, Piers W.
    Perez, Javier
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (03) : 683 - 709
  • [8] Large vector spaces of block-symmetric strong linearizations of matrix polynomials
    Bueno, M. I.
    Dopico, F. M.
    Furtado, S.
    Rychnovsky, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 477 : 165 - 210
  • [9] Computing lower rank approximations of matrix polynomials
    Giesbrecht, Mark
    Haraldson, Joseph
    Labahn, George
    JOURNAL OF SYMBOLIC COMPUTATION, 2020, 98 : 225 - 245
  • [10] Geometric Clustering: Fixed-Parameter Tractability and Lower Bounds with Respect to the Dimension
    Cabello, Sergio
    Giannopoulos, Panos
    Knauer, Christian
    Rote, Guenter
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 836 - +